skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bültmann, Helga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. none (Ed.)
    Vegetation has recolonized the Arctic numerous times throughout the Holocene. The most recent retreat of glaciers on Baffin Island, Nunavut, has been since the Little Ice Age, due to anthropogenic warming. Retreating cold-based ice often uncovers ancient vegetation. Recently exposed plants can tell us about past plant communities and colonization rates, important information for parameterizing vegetation feedback in climate models. Here, we provide complete descriptions of vegetation communities recently exposed by two retreating ice caps on Baffin Island and compare them with modern vegetation in the surrounding areas. We found that the ancient vegetation was similar to current vegetation, meaning that the current vegetation had not significantly changed during the past several hundred years. Colonization of bare ground was evident and differed depending on the substrate (rock versus finer substrates), with saxicolous lichens colonizing rocks and acrocarpous mosses and liverworts colonizing areas with finer substrates. The mature communities differed at the two sites, mostly because of a warmer climate at the southern site. Vegetation colonization, especially of light-colored rocks, reduces albedo, but the process can take hundreds of years. Changes in plant community composition are likely to continue for thousands of years due to climate change and the arrival of new species. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  2. Vegetation has recolonized the Arctic numerous times throughout the Holocene. The most recent retreat of glaciers on Baffin Island, Nunavut, has been since the Little Ice Age, due to anthropogenic warming. Retreating cold-based ice often uncovers ancient vegetation. Recently exposed plants can tell us about past plant communities and colonization rates, important information for parameterizing vegetation feedback in climate models. Here, we provide complete descriptions of vegetation communities recently exposed by two retreating ice caps on Baffin Island and compare them with modern vegetation in the surrounding areas. We found that the ancient vegetation was similar to current vegetation, meaning that the current vegetation had not significantly changed during the past several hundred years. Colonization of bare ground was evident and differed depending on the substrate (rock versus finer substrates), with saxicolous lichens colonizing rocks and acrocarpous mosses and liverworts colonizing areas with finer substrates. The mature communities differed at the two sites, mostly because of a warmer climate at the southern site. Vegetation colonization, especially of light-colored rocks, reduces albedo, but the process can take hundreds of years. Changes in plant community composition are likely to continue for thousands of years due to climate change and the arrival of new species. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Climate change is expected to induce shifts in the composition, structure and functioning of Arctic tundra ecosystems. Increases in the frequency and severity of tundra fires have the potential to catalyse vegetation transitions with far‐reaching local, regional and global consequences.We propose that post‐fire tundra recovery, coupled with climate change, may not necessarily lead to pre‐fire conditions. Our hypothesis, based on surveys and literature, suggests two climate–fire driven trajectories. One trajectory results in increased woody vegetation under low fire frequency; the other results in grass dominance under high frequency.Future research should address uncertainties regarding possible tundra ecosystem shifts linked to fires, using methods that encompass greater temporal and spatial scales than previously addressed. More case studies, especially in underrepresented regions and ecosystem types, are essential to broaden the empirical basis for forecasts and potential fire management strategies.Synthesis. Our review synthesises current knowledge on post‐fire vegetation trajectories in Arctic tundra ecosystems, highlighting potential transitions and alternative ecosystem states and their implications. We discuss challenges in defining and predicting these trajectories as well as future directions. 
    more » « less
    Free, publicly-accessible full text available March 13, 2026
  4. Abstract Sedimentary plant waxδ2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen‐alkanoic acid andn‐alkane chain‐length distributions andn‐alkanoic acidδ2H andδ13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalixspp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐alkanoic acidδ2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalixspp. In contrast, sedimentary long‐chainn‐alkanoic acidδ2H values fall between those for submerged/floating aquatic plants andSalixspp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes. 
    more » « less