Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 8, 2026
-
Incentive Designs for Stackelberg Games with a Large Number of Followers and their Mean-Field LimitsFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
This paper proposes a novel robust reinforcement learning framework for discrete-time linear systems with model mismatch that may arise from the sim-to-real gap. A key strategy is to invoke advanced techniques from control theory. Using the formulation of the classical risk-sensitive linear quadratic Gaussian control, a dual-loop policy optimization algorithm is proposed to generate a robust optimal controller. The dual-loop policy optimization algorithm is shown to be globally and uniformly convergent, and robust against disturbances during the learning process. This robustness property is called small-disturbance input-to-state stability and guarantees that the proposed policy optimization algorithm converges to a small neighborhood of the optimal controller as long as the disturbance at each learning step is relatively small. In addition, when the system dynamics is unknown, a novel model-free off-policy policy optimization algorithm is proposed. Finally, numerical examples are provided to illustrate the proposed algorithm.more » « less
An official website of the United States government
