skip to main content


Search for: All records

Creators/Authors contains: "Babaei, Hossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The first step toward investigating the effectiveness of a treatment via a randomized trial is to split the population into control and treatment groups then compare the average response of the treatment group receiving the treatment to the control group receiving the placebo. To ensure that the difference between the two groups is caused only by the treatment, it is crucial that the control and the treatment groups have similar statistics. Indeed, the validity and reliability of a trial are determined by the similarity of two groups’ statistics. Covariate balancing methods increase the similarity between the distributions of the two groups’ covariates. However, often in practice, there are not enough samples to accurately estimate the groups’ covariate distributions. In this article, we empirically show that covariate balancing with the standardized means difference (SMD) covariate balancing measure, as well as Pocock and Simon’s sequential treatment assignment method, are susceptible to worst case treatment assignments. Worst case treatment assignments are those admitted by the covariate balance measure, but result in highest possible ATE estimation errors. We developed an adversarial attack to find adversarial treatment assignment for any given trial. Then, we provide an index to measure how close the given trial is to the worst case. To this end, we provide an optimization-based algorithm, namely adversarial treatment assignment in treatment effect trials (ATASTREET), to find the adversarial treatment assignments. 
    more » « less
  2. Deep neural networks have become essential for numerous applications due to their strong empirical performance such as vision, RL, and classification. Unfortunately, these networks are quite difficult to interpret, and this limits their applicability in settings where interpretability is important for safety, such as medical imaging. One type of deep neural network is neural tangent kernel that is similar to a kernel machine that provides some aspect of interpretability. To further contribute interpretability with respect to classification and the layers, we develop a new network as a combination of multiple neural tangent kernels, one to model each layer of the deep neural network individually as opposed to past work which attempts to represent the entire network via a single neural tangent kernel. We demonstrate the interpretability of this model on two datasets, showing that the multiple kernels model elucidates the interplay between the layers and predictions. 
    more » « less