skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babu, Sachidananda R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ground penetrating radar (GPR) is a remote geophysical sensing method that has been applied in the localization of underground utilities, bridge deck survey, localization of landmines, mapping of terrain for aid in driverless cars, etc. Multistatic GPR can deliver a faster survey, wider spatial coverage, and multiple viewpoints of the subsurface. However, because of the transmit and receive antennas spatial offset, formation of 3D GPR image by simple stacking of the acquired A-scans is inaccurate. Also, averaging of different receivers data may lead to destructive interference of back-scattered waves due to different time delays implied by the spatial offset, so averaging does not lead to higher SNR in general. Furthermore, the energy back-scattered by scatter points are spread in hyperbolas in the GPR raw data. Migration or imaging algorithms are employed to increase SNR by focusing the hyperbolas. This focusing process also leads to better accuracy in target localization. In this paper, a computationally efficient synthetic aperture radar (SAR) imaging algorithm that properly integrates multistatic GPR data in both ground and air-coupled cases is presented. The algorithm is successfully applied on two synthetic datasets. 
    more » « less