skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baek, S. H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Proxy reconstructions and model simulations of precipitation during Earth's glacial periods suggest that the locations and mechanisms of atmospheric moisture transport have changed considerably during Earth's past. We investigate the hydroclimate of the Last Glacial Maximum (LGM) using simulations with the Community Earth System Model, with a focus on the extratropics and the influence of atmospheric rivers (ARs), a key driver of modern‐day moisture transport globally. Mean and extreme precipitation increase significantly over southwestern Patagonia, Iberia, and southwestern North America—mid‐latitude regions affected by ARs in the modern climate—despite overall decreases elsewhere. In each, the associated moisture transport changes are different, with increased transport and AR activity mainly occurring in the North Atlantic. The overall LGM response is dominated by the response to ice sheets, with other forcings causing additional cooling and drying over the extratropics and a strong decrease of moisture transport over the subpolar North Atlantic. 
    more » « less