The isolation of
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Akob, Denise M (2)
-
Baesman, Shaun M (2)
-
Fierst, Janna L (2)
-
Oremland, Ronald S (2)
-
Sutton, John M (2)
-
Andrews, Robert (1)
-
Bushman, Timothy J (1)
-
Freeman, John L (1)
-
Gushgari-Doyle, Sara (1)
-
Klein, Edina (1)
-
Kolton, Max (1)
-
Shrestha, Yesha (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
Semrau, Jeremy D (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Semrau, Jeremy D (Ed.)
Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members ofBradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. -
Baesman, Shaun M ; Sutton, John M ; Fierst, Janna L ; Akob, Denise M ; Oremland, Ronald S ( , International Journal of Systematic and Evolutionary Microbiology)
A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93Twas capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l−1NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93Trepresented a member of the genus
with highest 16S rRNA gene sequence similarities toSyntrophotalea DSM 3246T(96.6 %),Syntrophotalea acetylenica DSM 2380T(96.5 %), andSyntrophotalea carbinolica DSM 2394T(96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93Thad low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genusSyntrophotalea venetiana . The phylogenetic position of SFB93Twithin the familySyntrophotalea and as a novel member of the genusSyntrophotaleaceae was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species,Syntrophotalea Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T(=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.