skip to main content


Search for: All records

Creators/Authors contains: "Bagayoko, Diola"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    From 1964 and 1965 to present, the wide spread utilization of anincompletedensity functional theory (DFT) has led to mixed results: The second theorem of the theory asserts that the energy functional reaches its minimum if the calculation employs the ground state charge density—without providing a mechanism for finding this density. Calculations purporting to employ DFT have mostly assumed that results obtained with a judiciously selected basis set, following self-consistent iterations, are those of the ground state. The state obtained with a single basis set is a stationary one, among an infinite number of such states, with no proven relation to the actual ground state of the material. Most failures or limitations of the incomplete DFT can be traced to this error. We present results from calculations using thecompletedDFT. They are in excellent agreement with experiment and portend the realization of the Materials Genome Initiative.

     
    more » « less
  2. Although institutions of higher education have placed a large emphasis on increasing the number of underrepresented minority (URM) students matriculating in higher education, the disparities in STEM retention and graduation rates between URM and non-URM students emphasize the dire need for increased support to help URM students navigate challenges including stereotype threat, impostor phenomenon, and lack of social connectedness that disproportionately affect URM students in majority-dominated fields. Prior research has demonstrated that structured mentoring has the potential to generate substantial improvements in academic, social, and career outcomes for URM STEM students. In particular, network-based mentoring approaches that allow for students to receive both professional and peer mentoring, as well as the opportunity to mentor other students, have demonstrated success in this realm. In this article, we discuss how the current state of academia often fails URM STEM students and faculty, review literature regarding the ways in which structured mentoring approaches can alleviate barriers to success among URM groups in STEM fields, and offer recommendations regarding how academic institutions can successfully implement holistic student and faculty mentoring programs. 
    more » « less