skip to main content

Search for: All records

Creators/Authors contains: "Bagdasaryan, Eugene"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate a new method for injecting backdoors into machine learning models, based on compromising the loss-value computation in the model-training code. We use it to demonstrate new classes of backdoors strictly more powerful than those in the prior literature: single-pixel and physical backdoors in ImageNet models, backdoors that switch the model to a covert, privacy-violating task, and backdoors that do not require inference-time input modifications. Our attack is blind: the attacker cannot modify the training data, nor observe the execution of his code, nor access the resulting model. The attack code creates poisoned training inputs "on the fly," as the model is training, and uses multi-objective optimization to achieve high accuracy on both the main and backdoor tasks. We show how a blind attack can evade any known defense and propose new ones.
  2. Widespread deployment of Intelligent Infrastructure and the In- ternet of Things creates vast troves of passively-generated data. These data enable new ubiquitous computing applications—such as location-based services—while posing new privacy threats. In this work, we identify challenges that arise in applying use-based privacy to passively-generated data, and we develop Ancile, a plat- form that enforces use-based privacy for applications that consume this data. We find that Ancile constitutes a functional, performant platform for deploying privacy-enhancing ubiquitous computing applications.
  3. Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.
  4. Differential privacy (DP) is a popular mechanism for training machine learning models with bounded leakage about the presence of specific points in the training data. The cost of differential privacy is a reduction in the model's accuracy. We demonstrate that in the neural networks trained using differentially private stochastic gradient descent (DP-SGD), this cost is not borne equally: accuracy of DP models drops much more for the underrepresented classes and subgroups. For example, a gender classification model trained using DP-SGD exhibits much lower accuracy for black faces than for white faces. Critically, this gap is bigger in the DP model than in the non-DP model, i.e., if the original model is unfair, the unfairness becomes worse once DP is applied. We demonstrate this effect for a variety of tasks and models, including sentiment analysis of text and image classification. We then explain why DP training mechanisms such as gradient clipping and noise addition have disproportionate effect on the underrepresented and more complex subgroups, resulting in a disparate reduction of model accuracy.
  5. Federated learning enables thousands of participants to construct a deep learning model without sharing their private training data with each other. For example, multiple smartphones can jointly train a next-word predictor for keyboards without revealing what individual users type. We demonstrate that any participant in federated learning can introduce hidden backdoor functionality into the joint global model, e.g., to ensure that an image classifier assigns an attacker-chosen label to images with certain features, or that a word predictor completes certain sentences with an attacker-chosen word. We design and evaluate a new model-poisoning methodology based on model replacement. An attacker selected in a single round of federated learning can cause the global model to immediately reach 100% accuracy on the backdoor task. We evaluate the attack under different assumptions for the standard federated-learning tasks and show that it greatly outperforms data poisoning. Our generic constrain-and-scale technique also evades anomaly detection-based defenses by incorporating the evasion into the attacker's loss function during training.