skip to main content

Search for: All records

Creators/Authors contains: "Bahlai, Christie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract
    <p>This dataset lists 289 blacklegged tick population datasets from 6 studies that record abundance. These datasets were found by inputing keywords <em>Ixodes Scapularis</em> and <em>tick </em>in data repositories including Long Term Ecological Research data portal, National Ecological Observatory Network data portal, Google Datasets, Data Dryad, and Data One. The types of tick data recorded from these studies include density (number per square meter for example), proportion of ticks, count of ticks found on people. The locations of the datasets range from New York, New Jersey, Iowa, Massachusetts, and Connecticut, and range from 9 to 24 years in length. These datasets vary in that some record different life stages, geographic scope (county/town/plot), sampling technique (dragging/surveying), and different study length. The impact of these study factors on study results is analyzed in our research.</p> <p>Funding:</p> <p>RMC is supported by the National Institute of General Medical Sciences of the National Institutes of the Health under Award Number R25GM122672. CAB, JP, and KSW are supported by the Office of Advanced Cyberinfrastructure in the National Science Foundation under Award Number #1838807. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.</p>
    Other
    {&#34;references&#34;:More>>
  2. Free, publicly-accessible full text available April 1, 2023
  3. Chase, Jonathan (Ed.)
  4. Long-term monitoring programs are a fundamental part of both understanding ecological systems and informing management decisions. However, there are many constraints which might prevent monitoring programs from being designed to consider statistical power, site selection, or the full costs and benefits of monitoring. Key considerations can be incorporated into the optimal design of a management program with simulations and experiments. Here, we advocate for the expanded use of a third approach: non-random resampling of previously-collected data. This approach conducts experiments with available data to understand the consequences of different monitoring approaches. We first illustrate non-random resampling in determining the optimal length and frequency of monitoring programs to assess species trends. We then apply the approach to a pair of additional case studies, from fisheries and agriculture. Non-random resampling of previously-collected data is underutilized, but has the potential to improve monitoring programs.