- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bai, Jaeil (2)
-
Asadi, Reza (1)
-
Bian, Mengying (1)
-
Bird, Jonathan P (1)
-
Cheng, Xuemei M (1)
-
Crooker, Scott A (1)
-
Eng, Lukas (1)
-
Francisco, Joseph S. (1)
-
He, Keke (1)
-
Hou, Yanglong (1)
-
Huai, Chang (1)
-
Hui, Haolei (1)
-
Jagadish, Koushik (1)
-
Kirstein, Erik (1)
-
Miao, Guoxing (1)
-
Milde, Peter (1)
-
Mucchietto, Andrea (1)
-
Pan, Sheng (1)
-
Ren, He (1)
-
Sabirianov, Renat (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Covalent 2D magnets such as Cr2Te3, which feature self‐intercalated magnetic cations located between monolayers of transition‐metal dichalcogenide material, offer a unique platform for controlling magnetic order and spin texture, enabling new potential applications for spintronic devices. Here, it is demonstrated that the unconventional anomalous Hall effect (AHE) in Cr2Te3, characterized by additional humps and dips near the coercive field in AHE hysteresis, originates from an intrinsic mechanism dictated by the self‐intercalation. This mechanism is distinctly different from previously proposed mechanisms such as topological Hall effect, or two‐channel AHE arising from spatial inhomogeneities. Crucially, multiple Weyl‐like nodes emerge in the electronic band structure due to strong spin‐orbit coupling, whose positions relative to the Fermi level is sensitively modulated by the canting angles of the self‐intercalated Cr cations. These nodes contribute strongly to the Berry curvature and AHE conductivity. This component competes with the contribution from bands that are less affected by the self‐intercalation, resulting in a sign change in AHE with temperature and the emergence of additional humps and dips. The findings provide compelling evidence for the intrinsic origin of the unconventional AHE in Cr2Te3 and further establish self‐intercalation as a control knob for engineering AHE in complex magnets.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Zhao, Wenhui; Bai, Jaeil; Francisco, Joseph S.; Zeng, Xiao Cheng (, The Journal of Physical Chemistry C)