Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Declining nitrogen (N) availability relative to plant demand, known as N oligotrophication, is a widespread phenomenon that has been particularly well documented in northern hardwood forests of the northeast U.S. It is hypothesized that later fall senescence contributes to this trend by increasing tree resorption of N, resulting in higher carbon:nitrogen ratios (C:N) in litterfall and reduced N availability in soil. To examine the effects of litterfall C:N on soil N cycling, we conducted a litter quality manipulation experiment comparing low C:N and high C:N litter with native litter along an elevation and aspect gradient at Hubbard Brook Experimental Forest, NH, USA. We found that potential net ammonification and mineralization rates were positively correlated with litter N and negatively correlated with litter C:N under high C:N litter, but these relationships were not present under native or low C:N litter. Differences in nitrate pools and net mineralization rates between high- and low-quality litter treatments were greater at colder sites, where native litterfall tends to have lower C:N than at low-elevation sites. Together, these results demonstrate that higher C:N litter and a warming climate may contribute to N oligotrophication through effects on microbially driven N cycling rates in organic soils.more » « lessFree, publicly-accessible full text available August 25, 2026
-
Foliar resorption is a principal nutrient conservation mechanism in terrestrial vegetation that could be sensitive to ongoing changes in climate and atmospheric nitrogen (N) deposition. We quantified N resorption in northern hardwood forests along an elevation gradient of decreasing temperature and increasing soil N availability to evaluate how this critical nutrient cycling process can be expected to respond to global and regional environmental changes. Foliar N resorption proficiency (NRP) increased significantly at lower elevations for both sugar maple and American beech, the dominant species in these forests. Foliar N resorption efficiency (NRE) also decreased with increasing elevation, but only in one year. Both species exhibited strong negative relationships between NRP and soil N availability. Thus, we anticipate that with climate warming and decreasing N inputs, northern hardwood forests can be expected to exhibit stronger N conservation via foliar resorption. Both species also exhibited strong correlations between resorption efficiency of N and C, but resorption of both elements was much greater for beech than sugar maple, suggesting contrasting mechanisms of nutrient conservation between these two widespread species.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Ai, Zhipin (Ed.)Snowpacks are changing in northeastern North America as the regional climate warms, yet the relative influence of changes in precipitation compared to changes in ablation on snowpacks is poorly understood. We use 56 years of weekly snow water equivalent (SWE) measurements from three locations within a study site which vary in elevation and aspect, paired with adjacent daily climate measurements, to investigate relationships between climate and snowpack onset, maximum, and disappearance. Maximum snowpack size and snowpack duration are shrinking at all sites, at rates ranging from 4.3 days/decade at the coldest site to 9.6 days/decade at the warmest site. The shorter snowpack duration at all sites results from an earlier snowpack disappearance, stemming largely from reduced winter maximum snowpack sizes. Trends in snowpack establishment dates vary, with the south-facing site showing a trend toward later establishment but the two north-facing sites showing no change. The date of the maximum snowpack size varies by aspect and elevation but is not changing at any site. Using a 0° C threshold for frozen vs. liquid precipitation, we only observed a decrease in the proportion of precipitation falling in frozen form at the warmer, south-facing site in the winter period. In contrast, the total weekly snowpack ablation in the winter period has been increasing at least marginally at each site, even at sites which do not show increases in thawing conditions. Ablation increases range from 0.4 cm/decade at the warmest site, to 1.4 and 1.2 cm/decade at the north-facing sites. The south-facing site shows only marginally significant trends in total winter ablation, which we interpret as being limited by the smaller snowpack at this site. Overall, we conclude that rising air temperatures are leading to warmer, more sensitive snowpacks and this change becomes evident before those temperatures lead to changes in precipitation form.more » « less
-
null (Ed.)Long-term streamflow datasets inevitably include gaps, which must be filled to allow estimates of runoff and ultimately catchment water budgets. Uncertainty introduced by filling gaps in discharge records is rarely, if ever, reported. We characterized the uncertainty due to streamflow gaps in a reference watershed at the Hubbard Brook Experimental Forest (HBEF) from 1996 to 2009 by simulating artificial gaps of varying duration and flow rate, with the objective of quantifying their contribution to uncertainty in annual streamflow. Gaps were filled using an ensemble of regressions relating discharge from nearby streams, and the predicted flow was compared to the actual flow. Differences between the predicted and actual runoff increased with both gap length and flow rate, averaging 2.8% of the runoff during the gap. At the HBEF, the sum of gaps averaged 22 days per year, with the lowest and highest annual uncertainties due to gaps ranging from 1.5 mm (95% confidence interval surrounding mean runoff) to 21.1 mm. As a percentage of annual runoff, uncertainty due to gap filling ranged from 0.2–2.1%, depending on the year. Uncertainty in annual runoff due to gaps was small at the HBEF, where infilling models are based on multiple similar catchments in close proximity to the catchment of interest. The method demonstrated here can be used to quantify uncertainty due to gaps in any long-term streamflow data set, regardless of the gap-filling model applied.more » « less
An official website of the United States government
