skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bailey, Nathan W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pinter-Wollman, Noa (Ed.)
    Abstract Circadian rhythms are ubiquitous in nature and endogenous circadian clocks drive the daily expression of many fitness-related behaviors. However, little is known about whether such traits are targets of selection imposed by natural enemies. In Hawaiian populations of the nocturnally active Pacific field cricket (Teleogryllus oceanicus), males sing to attract mates, yet sexually selected singing rhythms are also subject to natural selection from the acoustically orienting and deadly parasitoid fly, Ormia ochracea. Here, we use T. oceanicus to test whether singing rhythms are endogenous and scheduled by circadian clocks, making them possible targets of selection imposed by flies. We also develop a novel audio-to-circadian analysis pipeline, capable of extracting useful parameters from which to train machine learning algorithms and process large quantities of audio data. Singing rhythms fulfilled all criteria for endogenous circadian clock control, including being driven by photoschedule, self-sustained periodicity of approximately 24 h, and being robust to variation in temperature. Furthermore, singing rhythms varied across individuals, which might suggest genetic variation on which natural and sexual selection pressures can act. Sexual signals and ornaments are well-known targets of selection by natural enemies, but our findings indicate that the circadian timing of those traits’ expression may also determine fitness. 
    more » « less
  2. The social environment is often the most dynamicandfitness-relevant environment animals experience. Here we testedwhether plasticity arising from variation in social environments canpromote signal-preference divergence—a key prediction of recentspeciation theory but one that has proven difficult to test in natural sys-tems. Interactions in mixed social aggregations could reduce, create,or enhance signal-preference differences. In the latter case, social plas-ticity could establish or increase assortative mating. We tested this byrearing two recently diverged species ofEnchenopatreehoppers—sap-feeding insects that communicate with plant-borne vibrationalsignals—in treatments consisting of mixed-species versus own-speciesaggregations. Social experience with heterospecifics (in the mixed-species treatment) resulted in enhanced signal-preference species dif-ferences. For one of the two species, we tested but found no differencesin the plastic response between sympatric and allopatric sites, sug-gesting the absence of reinforcement in the signals and preferencesand their plastic response. Our results support the hypothesis that so-cial plasticity can create or enhance signal-preference differences andthat this might occur in the absence of long-term selection against hy-bridization on plastic responses themselves. Such social plasticity mayfacilitate rapid bursts of diversification. 
    more » « less
  3. Abstract The interaction effect coefficient ψ has been a much-discussed, fundamental parameter of indirect genetic effect (IGE) models since its formal mathematical description in 1997. The coefficient simultaneously describes the form of changes in trait expression caused by genes in the social environment and predicts the evolutionary consequences of those IGEs. Here, we report a striking mismatch between theoretical emphasis on ψ and its usage in empirical studies. Surveying all IGE research, we find that the coefficient ψ has not been equivalently conceptualized across studies. Several issues related to its proper empirical measurement have recently been raised, and these may severely distort interpretations about the evolutionary consequences of IGEs. We provide practical advice on avoiding such pitfalls. The majority of empirical IGE studies use an alternative variance-partitioning approach rooted in well-established statistical quantitative genetics, but several hundred estimates of ψ (from 15 studies) have been published. A significant majority are positive. In addition, IGEs with feedback, that is, involving the same trait in both interacting partners, are far more likely to be positive and of greater magnitude. Although potentially challenging to measure without bias, ψ has critically-developed theoretical underpinnings that provide unique advantages for empirical work. We advocate for a shift in perspective for empirical work, from ψ as a description of IGEs, to ψ as a robust predictor of evolutionary change. Approaches that “run evolution forward” can take advantage of ψ to provide falsifiable predictions about specific trait interactions, providing much-needed insight into the evolutionary consequences of IGEs. 
    more » « less
  4. Freshwater salinization syndrome (FSS) refers to the suite of interactive effects of salt ions on degradation of physical, biological,and social systems. Best management practices (BMPs), which are methods to effectively reduce runoff and nonpoint source pollution (stormwater, nutrients, sediments), do not typically consider management of salt pollution. We investigate impacts of FSS on mobilization of salts, nutrients, and metals in urban streams and storm water BMPs by analyzing original data on concentrations and fluxes of salts, nutrients, and metals from 7 urban watersheds in the Mid-Atlantic USA and synthesizing literature data. We also explore future critical research needs through a survey of practitioners and scientists. Our original data show 1) sharp pulses in concentrations of salt ions and metals in urban streams directly following both road salt events and stream restoration construction (e.g.,similar to the way concentrations increase during other soil disturbance activities); 2) sharp declines in pH (acidification) in response to road salt applications because of mobilization of H+ from soil exchange sites by Na+; 3) sharp increases inorganic matter from microbial and algal sources (based on fluorescence spectroscopy) in response to road salt applications, likely because of lysing cells and changes insolubility; 4) substantial retention (~30–40%) of Na+ in stormwater BMP sediments and floodplains in response to salinization; 5) increased ion exchange and mobilization of diverse salt ions (Na+, Ca2+, K+, Mg2+), nutrients(N, P), and trace metals(Cu, Sr) from stormwater BMPs and restored streams in response to FSS; 6) downstream increasing loads ofCl–, SO42–, Br–, F–,andI–along flowpaths through urbanstreams and P release from urban stormwater BMPs in response to salinization; and 7)a substantial annual reduction (>50%) in Na+concentrations in an urban stream when road salt applications were dramatically reduced, which suggests potential for ecosystem recovery. We compare our original results with published metrics of contaminant retention and release across a broad range of stormwater BMPs from North America and Europe.Overall, urban streams and stormwater BMPs consistently retain Na+ and Cl–but mobilize multiple contaminants based on salt types and salinity levels. Finally, we present our top 10 research questions regarding FSS impacts on urban streams and stormwater BMPs. Reducing diverse chemical cocktails of contaminants mobilized by freshwater salinization is a priority for effectively and holistically restoring urban waters. 
    more » « less
  5. Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, and (4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions (e.g.monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services. 
    more » « less