skip to main content


Search for: All records

Creators/Authors contains: "Bailey, Sophia J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An important but often overlooked feature of Diels–Alder (DA) cycloadditions is the ability for DA adducts to undergo mechanically induced cycloreversion when placed under force. Herein, we demonstrate that the commonly employed DA cycloaddition between furan and maleimide to crosslink hydrogels results in slow gelation kinetics and “mechanolabile” crosslinks that relate to reduced material strength. Through rational computational design, “mechanoresistant” DA adducts were identified by constrained geometries simulate external force models and employed to enhance failure strength of crosslinked hydrogels. Additionally, utilization of a cyclopentadiene derivative, spiro[2.4]hepta-4,6-diene, provided mechanoresistant DA adducts and rapid gelation in minutes at room temperature. This study illustrates that strategic molecular-level design of DA crosslinks can provide biocompatible materials with improved processing, mechanical durability, lifetime, and utility. 
    more » « less
  2. Abstract

    Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two‐step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility. In this work we introduce a new protection‐deprotection approach utilizing a two‐stage Diels–Alder cyclopentadiene‐maleimide step‐growth polymerization to enable mild yet efficient, fast, controlled, reproducible and user‐friendly polymerizations, broadening the scope of liquid crystal systems. Thorough characterization of the films by DSC, DMA, POM and WAXD show the successful synthesis of a uniaxially aligned liquid crystal network with thermomechanical actuation abilities.

     
    more » « less
  3. Abstract

    Aligned liquid crystal polymers are materials of interest for electronic, optic, biological and soft robotic applications. The manufacturing and processing of these materials have been widely explored with mechanical alignment establishing itself as a preferred method due to its ease of use and widespread applicability. However, the fundamental chemistry behind the required two‐step polymerization for mechanical alignment has limitations in both fabrication and substrate compatibility. In this work we introduce a new protection‐deprotection approach utilizing a two‐stage Diels–Alder cyclopentadiene‐maleimide step‐growth polymerization to enable mild yet efficient, fast, controlled, reproducible and user‐friendly polymerizations, broadening the scope of liquid crystal systems. Thorough characterization of the films by DSC, DMA, POM and WAXD show the successful synthesis of a uniaxially aligned liquid crystal network with thermomechanical actuation abilities.

     
    more » « less
  4. Abstract

    Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical‐based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water‐soluble cyclopentadienone‐norbornadiene (CPD‐NBD) adduct is disclosed as a diene photocage for radical‐free Diels‐Alder photopatterning. We show that this scalable CPD‐NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD‐NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.

     
    more » « less
  5. Abstract

    Spatiotemporally functionalized hydrogels have exciting applications in tissue engineering, but their preparation often relies on radical‐based strategies that can be deleterious in biological settings. Herein, the computationally guided design, synthesis, and application of a water‐soluble cyclopentadienone‐norbornadiene (CPD‐NBD) adduct is disclosed as a diene photocage for radical‐free Diels‐Alder photopatterning. We show that this scalable CPD‐NBD derivative is readily incorporated into hydrogel formulations, providing gels that can be patterned with dienophiles upon 365 nm uncaging of cyclopentadiene. Patterning is first visualized through conjugation of cyanine dyes, then biological utility is highlighted by patterning peptides to direct cellular adhesion. Finally, the ease of use and versatility of this CPD‐NBD derivative is demonstrated by direct incorporation into a commercial 3D printing resin to enable the photopatterning of structurally complex, printed hydrogels.

     
    more » « less