Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We investigated the biogeography of benthic foraminifera in a highly urbanized tropical seascape, i.e. Hong Kong, in order to assess their utility as bioindicators relative to other marine fauna. Hong Kong is one of the largest coastal cities on the planet and studies of other benthic fauna in the region are available for comparison. We found that: (1) turbid, muddy habitats host a unique foraminiferal fauna; (2) areas with intermediate levels of eutrophication have the highest foraminiferal species diversity; (3) semi-enclosed and heavily polluted environments host a distinct foraminiferal fauna, characterized by low taxonomic diversity and/or high dominance, and that is acclimated to stressful marine conditions. Biodiversity patterns of foraminifera in Hong Kong are generally consistent with those of other soft-sediment macro- and meio-fauna (e.g. polychaetes, molluscs and ostracods); however, foraminifera may be more sensitive than these other groups to eutrophication and associated changes in coastal food webs. The tolerance of some, but not other, species to eutrophic and hypoxic conditions means that foraminiferal faunas can serve as bioindicators across a wide array of environmental conditions, in contrast with corals whose sensitivity to eutrophication results in their absence from eutrophied settings. The well-known autoecology of foraminifera taxa can help to characterize environmental conditions of different habitats and regional environmental gradients. Although the use of fauna as bioindicators may be most robust when data are compared for multiple taxonomic groups, when such broad sampling is not available, benthic foraminifera are particularly well suited for environmental assessments due to their ubiquity, interspecific environmental breadth, and the well-understood environmental preference of individual taxa.more » « less
-
Elgar, Mark A. (Ed.)Coevolution—reciprocal evolutionary change between interacting lineages (Thompson, 1994; see Glossary)—is thought to have played a profound role in the evolution of Life on Earth. From similar patterns across the wings of unrelated lineages of butterflies (Hoyal Cuthill and Charleston, 2015), egg mimicry of “cheating” brood parasites (Davies, 2010), to the role of animal pollinators in driving the diversification of flowering plants (Kay and Sargent, 2009), to the ubiquity of sexual reproduction and sexual conflicts (Hamilton, 2002; Arnqvist and Rowe, 2005; King et al., 2009), the formation of the eukaryotic cell (Martin et al., 2015; Imachi et al., 2020), and even the origin of living organisms themselves (Mizuuchi and Ichihashi, 2018), evolutionary changes among interacting lineages have played profound and important roles in the history of Life. This Grand Challenges inaugural contribution encompasses eclectic opinions of the editorial board as to what are the next frontiers of coevolution research in the 21st century. Coevolutionary biology is a field that has garnered a lot of attention in recent years, in part as a result of technical advances in nucleotide sequencing and bioinformatics in the burgeoning field of host–microbial interactions. Many seminal studies of coevolution examined reciprocal evolutionary change between two or a few interacting macroscopic species that imposed selective pressures on one another (e.g., insect or bird pollinators and their flowering host plants). Understanding the contexts under which coevolution occurs, as opposed to scenarios in which each partner adapts independently to a particular environment (Darwin, 1862; Stiles, 1978) is important to elucidate coevolutionary processes. A whole spectrum of organismal interactions has been examined under the lens of coevolution, providing additional context, and nuance to ecological strategies traditionally categorized as ranging from beneficial to detrimental for participating species (Figure 1). In particular, a coevolutionary perspective has revealed that even “mutualisms” are not always fully beneficial or cooperative for the partners involved. Instead, the tendency to “cheat” permeates across symbiotic partnerships (Perez-Lamarque et al., 2020). Conversely, recent evidence suggests that non-lethal predation by co-evolved predators, which has traditionally been assumed to be entirely antagonistic, may provide sessile prey with some indirect benefit through enhanced opportunities to acquire beneficial symbiotic microorganisms (Grupstra et al., 2021). Herein, we discuss some of the recent areas of active research in coevolution, restricting our focus to coevolution between interacting species.more » « less
An official website of the United States government
