skip to main content

Search for: All records

Creators/Authors contains: "Baker, Jonathan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum computing promises speedup of classical algorithms in the long term. Current hardware is unable to support this goal and programs must be efficiently compiled to use of the devices through reduction of qubits used, gate count and circuit duration. Many quantum systems have access to higher levels, expanding the computational space for a device. We develop higher level qudit communication circuits, compilation pipelines, and circuits that take advantage of this extra space by temporarily pushing qudits into these higher levels. We show how these methods are able to more efficiently use the device, and where they see diminishing returns.
    Free, publicly-accessible full text available May 1, 2023
  2. null (Ed.)
  3. Current quantum computers are especially error prone and require high levels of optimization to reduce operation counts and maximize the probability the compiled program will succeed. These computers only support operations decomposed into one- and two-qubit gates and only two-qubit gates between physically connected pairs of qubits. Typical compilers first decompose operations, then route data to connected qubits. We propose a new compiler structure, Orchestrated Trios, that first decomposes to the three-qubit Toffoli, routes the inputs of the higher-level Toffoli operations to groups of nearby qubits, then finishes decomposition to hardware-supported gates. This significantly reduces communication overhead by giving the routing pass access to the higher-level structure of the circuit instead of discarding it. A second benefit is the ability to now select an architecture-tuned Toffoli decomposition such as the 8-CNOT Toffoli for the specific hardware qubits now known after the routing pass. We perform real experiments on IBM Johannesburg showing an average 35% decrease in two-qubit gate count and 23% increase in success rate of a single Toffoli over Qiskit. We additionally compile many near-term benchmark algorithms showing an average 344% increase in (or 4.44x) simulated success rate on the Johannesburg architecture and compare with other architecture types.
  4. Many quantum algorithms make use of ancilla, additional qubits used to store temporary information during computation, to reduce the total execution time. Quantum computers will be resource-constrained for years to come so reducing ancilla requirements is crucial. In this work, we give a method to generate ancilia out of idle qubits by placing some in higher-value states, called qudits. We show how to take a circuit with many O(n) ancilla and design an ancilla-free circuit with the same asymptotic depth. Using this, we give a circuit construction for an in-place adder and a constant adder both with O(log n) depth using temporary qudits and no ancilla.
  5. Trapped-ion qubits are a leading technology for practical quantum computing. In this work, we present an architectural analysis of a linear-tape architecture for trapped ions. In order to realize our study, we develop and evaluate mapping and scheduling algorithms for this architecture. In particular, we introduce TILT, a linear “Turing-machinelike” architecture with a multilaser control “head,” where a linear chain of ions moves back and forth under the laser head. We find that TILT can substantially reduce communication as compared with comparable-sized Quantum Charge Coupled Device (QCCD) architectures. We also develop two important scheduling heuristics for TILT. The first heuristic reduces the number of swap operations by matching data traveling in opposite directions into an “opposing swap.”, and also avoids the maximum swap distance across the width of the head, as maximum swap distances make scheduling multiple swaps in one head position difficult. The second heuristic minimizes ion chain motion by scheduling the tape to the position with the maximal executable operations for every movement. We provide application performance results from our simulation, which suggest that TILT can outperform QCCD in a range of NISQ applications in terms of success rate (up to 4.35x and 1.95x on average). We alsomore »discuss using TILT as a building block to extend existing scalable trapped-ion quantum computing proposals.« less
  6. Current, near-term quantum devices have shown great progress in the last several years culminating recently with a demonstration of quantum supremacy. In the medium-term, however, quantum machines will need to transition to greater reliability through error correction, likely through promising techniques like surface codes which are well suited for near-term devices with limited qubit connectivity. We discover quantum memory, particularly resonant cavities with transmon qubits arranged in a 2.5D architecture, can efficiently implement surface codes with substantial hardware savings and performance/fidelity gains. Specifically, we virtualize logical qubits by storing them in layers of qubit memories connected to each transmon. Surprisingly, distributing each logical qubit across many memories has a minimal impact on fault tolerance and results in substantially more efficient operations. Our design permits fast transversal application of CNOT operations between logical qubits sharing the same physical address (same set of cavities) which are 6x faster than standard lattice surgery CNOTs. We develop a novel embedding which saves approximately 10x in transmons with another 2x savings from an additional optimization for compactness. Although qubit virtualization pays a 10x penalty in serialization, advantages in the transversal CNOT and in area efficiency result in fault-tolerance and performance comparable to conventional 2D transmon-onlymore »architectures. Our simulations show our system can achieve fault tolerance comparable to conventional two-dimensional grids while saving substantial hardware. Furthermore, our architecture can produce magic states at 1.22x the baseline rate given a fixed number of transmon qubits. This is a critical benchmark for future fault-tolerant quantum computers as magic states are essential and machines will spend the majority of their resources continuously producing them. This architecture substantially reduces the hardware requirements for fault-tolerant quantum computing and puts within reach a proof-of-concept experimental demonstration of around 10 logical qubits, requiring only 11 transmons and 9 attached cavities in total.« less
  7. Current quantum computer designs will not scale. To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters. We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitioning heuristics which map quantum circuits to modular physical machines one time slice at a time. Specifically, we create optimized mappings for each time slice, accounting for the cost to move data from the previous time slice and using a tunable lookahead scheme to reduce the cost to move to future time slices. We compare our approach to a traditional statically-mapped, owner-computes model. Our results show strict improvement over the static mapping baseline. We reduce the non-local communication overhead by 89.8% in the best case and by 60.9% on average. Our techniques, unlike many exact solver methods, are computationally tractable.
  8. We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the lg(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla - an exponential improvement over the best qubit-only equivalent. Our approach features a 70× improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability (fidelity) for our circuit, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path toward extending the frontier of quantum computers.