skip to main content


Search for: All records

Creators/Authors contains: "Baker, Tessa M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synthetic methods that utilise iron to facilitate C–H bond activation to yield new C–C and C–heteroatom bonds continue to attract significant interest. However, the development of these systems is still hampered by a limited molecular-level understanding of the key iron intermediates and reaction pathways that enable selective product formation. While recent studies have established the mechanism for iron-catalysed C–H arylation from aryl-nucleophiles, the underlying mechanistic pathway of iron-catalysed C–H activation/functionalisation systems which utilise electrophiles to establish C–C and C–heteroatom bonds has not been determined. The present study focuses on an iron-catalysed C–H allylation system, which utilises allyl chlorides as electrophiles to establish a C–allyl bond. Freeze-trapped inorganic spectroscopic methods ( 57 Fe Mössbauer, EPR, and MCD) are combined with correlated reaction studies and kinetic analyses to reveal a unique and rapid reaction pathway by which the allyl electrophile reacts with a C–H activated iron intermediate. Supporting computational analysis defines this novel reaction coordinate as an inner-sphere radical process which features a partial iron–bisphosphine dissociation. Highlighting the role of the bisphosphine in this reaction pathway, a complementary study performed on the reaction of allyl electrophile with an analogous C–H activated intermediate bearing a more rigid bisphosphine ligand exhibits stifled yield and selectivity towards allylated product. An additional spectroscopic analysis of an iron-catalysed C–H amination system, which incorporates N -chloromorpholine as the C–N bond-forming electrophile, reveals a rapid reaction of electrophile with an analogous C–H activated iron intermediate consistent with the inner-sphere radical process defined for the C–H allylation system, demonstrating the prevalence of this novel reaction coordinate in this sub-class of iron-catalysed C–H functionalisation systems. Overall, these results provide a critical mechanistic foundation for the rational design and development of improved systems that are efficient, selective, and useful across a broad range of C–H functionalisations. 
    more » « less
  2. Abstract

    Homoleptic σ‐bonded uranium–alkyl complexes have been a synthetic target since the Manhattan Project. The current study describes the synthesis and characterization of several unprecedented uranium–methyl complexes. Amongst these complexes, the first example of a homoleptic uranium–alkyl dimer, [Li(THF)4]2[U2(CH3)10], as well as a seven‐coordinate uranium–methyl monomer, {Li(OEt2)Li(OEt2)2UMe7Li}nwere both crystallographically identified. The diversity of complexes reported herein provides critical insight into the structural diversity, electronic structure and bonding in uranium–alkyl chemistry.

     
    more » « less
  3. Abstract

    Homoleptic σ‐bonded uranium–alkyl complexes have been a synthetic target since the Manhattan Project. The current study describes the synthesis and characterization of several unprecedented uranium–methyl complexes. Amongst these complexes, the first example of a homoleptic uranium–alkyl dimer, [Li(THF)4]2[U2(CH3)10], as well as a seven‐coordinate uranium–methyl monomer, {Li(OEt2)Li(OEt2)2UMe7Li}nwere both crystallographically identified. The diversity of complexes reported herein provides critical insight into the structural diversity, electronic structure and bonding in uranium–alkyl chemistry.

     
    more » « less
  4. The first direct syntheses, structural characterizations, and reactivity studies of multinuclear iron–phenyl species formed upon reaction of Fe(acac)3and PhMgBr in THF are described.

     
    more » « less
  5. Abstract

    The use ofN‐methylpyrrolidone (NMP) as a co‐solvent in ferric salt catalyzed cross‐coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross‐coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6][FeMe3]2(1), which forms as the major iron species in situ in reactions of Fe(acac)3and MeMgBr under catalytically relevant conditions where NMP is employed as a co‐solvent. Importantly, combined GC analysis and57Fe Mössbauer spectroscopic studies identified1as a highly reactive iron species for the selective formation generating cross‐coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of1over [Fe8Me12]cluster generation, which occurs in the absence of NMP.

     
    more » « less
  6. Abstract

    The use ofN‐methylpyrrolidone (NMP) as a co‐solvent in ferric salt catalyzed cross‐coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross‐coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6][FeMe3]2(1), which forms as the major iron species in situ in reactions of Fe(acac)3and MeMgBr under catalytically relevant conditions where NMP is employed as a co‐solvent. Importantly, combined GC analysis and57Fe Mössbauer spectroscopic studies identified1as a highly reactive iron species for the selective formation generating cross‐coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of1over [Fe8Me12]cluster generation, which occurs in the absence of NMP.

     
    more » « less