skip to main content


Search for: All records

Creators/Authors contains: "Baldassare, Vivienne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We assemble a catalog of 15424 nearby galaxies within 50 Mpc with consistent and homogenized mass, distance, and morphological type measurements. Our catalog combines galaxies from HyperLeda, the NASA-Sloan Atlas, and the Catalog of Local Volume Galaxies. Distances for the galaxies combine best-estimates for flow-corrected redshift-based distances with redshift-independent distances. We also compile magnitude and color information for 11740 galaxies. We use the galaxy colors to estimate masses by creating self-consistent color—mass-to-light ratio relations in four bands; we also provide color transformations of all colors into Sloangiby using galaxies with overlapping color information. We compile morphology information for 13744 galaxies, and use the galaxy color information to separate early- and late-type galaxies. This catalog is widely applicable for studies of nearby galaxies and for placing these studies in the context of more distant galaxies. We present one application here: a preliminary analysis of the nuclear X-ray activity of galaxies. Out of 1506 galaxies within the sample that have available Chandra X-ray observations, we find that 291 have detected nuclear sources. Of the 291 existing Chandra detections, 249 have log(LX) > 38.3 and available stellar mass estimates. We find that the X-ray active fractions in early-type galaxies are higher than in late-type galaxies, especially for galaxy stellar masses between 109and 1010.5M. We show that these differences may be due at least in part to the increased astrometric uncertainties in late-type galaxies relative to early types.

     
    more » « less
    Free, publicly-accessible full text available December 22, 2024
  2. ABSTRACT

    The Merian survey is mapping ∼ 850 deg2 of the Hyper Suprime-Cam Strategic Survey Program (HSC-SSP) wide layer with two medium-band filters on the 4-m Victor M. Blanco telescope at the Cerro Tololo Inter-American Observatory, with the goal of carrying the first high signal-to-noise (S/N) measurements of weak gravitational lensing around dwarf galaxies. This paper presents the design of the Merian filter set: N708 (λc = 7080 Å, Δλ = 275 Å) and N540 (λc = 5400 Å, Δλ = 210 Å). The central wavelengths and filter widths of N708 and N540 were designed to detect the $\rm H\alpha$ and $\rm [OIII]$ emission lines of galaxies in the mass range $8\lt \rm \log M_*/M_\odot \lt 9$ by comparing Merian fluxes with HSC broad-band fluxes. Our filter design takes into account the weak lensing S/N and photometric redshift performance. Our simulations predict that Merian will yield a sample of ∼ 85 000 star-forming dwarf galaxies with a photometric redshift accuracy of σΔz/(1 + z) ∼ 0.01 and an outlier fraction of $\eta =2.8~{{\ \rm per\ cent}}$ over the redshift range 0.058 < z < 0.10. With 60 full nights on the Blanco/Dark Energy Camera (DECam), the Merian survey is predicted to measure the average weak lensing profile around dwarf galaxies with lensing S/N ∼32 within r < 0.5 Mpc and lensing S/N ∼90 within r < 1.0 Mpc. This unprecedented sample of star-forming dwarf galaxies will allow for studies of the interplay between dark matter and stellar feedback and their roles in the evolution of dwarf galaxies.

     
    more » « less
  3. ABSTRACT

    We present new 5 GHz Very Large Array observations of a sample of eight active intermediate-mass black holes with masses 104.9 M⊙ < M < 106.1 M⊙ found in galaxies with stellar masses M* < 3 × 109 M⊙. We detected five of the eight sources at high significance. Of the detections, four were consistent with a point source, and one (SDSS J095418.15+471725.1, with black hole mass M < 105 M⊙) clearly shows extended emission that has a jet morphology. Combining our new radio data with the black hole masses and literature X-ray measurements, we put the sources on the Fundamental Plane of black hole accretion. We find that the extent to which the sources agree with the Fundamental Plane depends on their star-forming/composite/active galactic nucleus (AGN) classification based on optical narrow emission-line ratios. The single star-forming source is inconsistent with the Fundamental Plane. The three composite sources are consistent, and three of the four AGN sources are inconsistent with the Fundamental Plane. We argue that this inconsistency is genuine and not a result of misattributing star formation to black hole activity. Instead, we identify the sources in our sample that have AGN-like optical emission-line ratios as not following the Fundamental Plane and thus caution the use of the Fundamental Plane to estimate masses without additional constraints, such as radio spectral index, radiative efficiency, or the Eddington fraction.

     
    more » « less
  4. ABSTRACT

    Owing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses $M_\star \lesssim 3 \times 10^9 \, \mathrm{M}_\odot$) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G. Jansky Very Large Array). These three galaxies were previously identified as hosting candidate active galactic nuclei on the basis of lower resolution X-ray imaging. With our new observations, we find that X-ray sources in two galaxies (SDSS J121326.01+543631.6 and SDSS J122111.29+173819.1) are off-nuclear and lack corresponding radio emission, implying they are likely luminous X-ray binaries. The third galaxy (Mrk 1434) contains two X-ray sources (each with LX ≈ 1040 erg s−1) separated by 2.8 arcsec, has a low metallicity [12 + log(O/H)  = 7.8], and emits nebular He ii λ4686 line emission. The northern source has spatially coincident point-like radio emission at 9.0 GHz and extended radio emission at 5.5 GHz. We discuss X-ray binary interpretations (where an ultraluminous X-ray source blows a ‘radio bubble’) and active galactic nucleus interpretations (where an $\approx 4\times 10^5 \, \mathrm{M}_\odot$ black hole launches a jet). In either case, we find that the He ii emission cannot be photoionized by the X-ray source, unless the source was ≈30–90 times more luminous several hundred years ago.

     
    more » « less