Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A long standing open problem in the theory of neural networks is the development of quantitative methods to estimate and compare the capabilities of different architectures. Here we define the capacity of an architecture by the binary logarithm of the number of functions it can compute, as the synaptic weights are varied. The capacity provides an upper bound on the number of bits that can be extracted from the training data and stored in the architecture during learning. We study the capacity of layered, fully-connected, architectures of linear threshold neurons with L layers and show that in essence the capacitymore »
-
Recently, Approximate Policy Iteration (API) algorithms have achieved superhuman proficiency in two-player zero-sum games such as Go, Chess, and Shogi without human data. These API algorithms iterate between two policies: a slow policy (tree search), and a fast policy (a neural network). In these two-player games, a reward is always received at the end of the game. However, the Rubik’s Cube has only a single solved state, and episodes are not guaranteed to terminate. This poses a major problem for these API algorithms since they rely on the reward received at the end of the game. We introduce Autodidactic Iteration:more »
-
Free, publicly-accessible full text available November 1, 2022
-
Free, publicly-accessible full text available September 1, 2022
-
Abstract The two-detector design of the NOvA neutrino oscillation experiment, in which two functionally identical detectors are exposed to an intense neutrino beam, aids in canceling leading order effects of cross-section uncertainties. However, limited knowledge of neutrino interaction cross sections still gives rise to some of the largest systematic uncertainties in current oscillation measurements. We show contemporary models of neutrino interactions to be discrepant with data from NOvA, consistent with discrepancies seen in other experiments. Adjustments to neutrino interaction models in GENIE are presented, creating an effective model that improves agreement with our data. We also describe systematic uncertainties onmore »
-
Free, publicly-accessible full text available April 1, 2023