Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 16, 2023
-
Abstract We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s −1 magnetic field resolution. The CSs have thickness, λ, from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10 λ p in terms of local proton inertial length, λ p . We found that the current density is larger for smaller-scale CSs, J 0 ≈ 6 nAm −2 · ( λ /100 km) −0.56 , but does not statistically exceed a critical value, J Amore »Free, publicly-accessible full text available February 1, 2023
-
Abstract The Parker Solar Probe (PSP) entered a region of sub-Alfvénic solar wind during encounter 8, and we present the first detailed analysis of low-frequency turbulence properties in this novel region. The magnetic field and flow velocity vectors were highly aligned during this interval. By constructing spectrograms of the normalized magnetic helicity, cross-helicity, and residual energy, we find that PSP observed primarily Alfvénic fluctuations, a consequence of the highly field-aligned flow that renders quasi-2D fluctuations unobservable to PSP. We extend Taylor’s hypothesis to sub- and super-Alfvénic flows. Spectra for the fluctuating forward and backward Elsässer variables ( z ± ,more »Free, publicly-accessible full text available February 1, 2023
-
Free, publicly-accessible full text available April 1, 2023
-
Abstract We present a data set and properties of 18,785 proton kinetic-scale current sheets collected over 124 days in the solar wind using magnetic field measurements at 1/11 s resolution aboard the Wind spacecraft. We show that all of the current sheets are in the parameter range where reconnection is not suppressed by diamagnetic drift of the X-line. We argue this necessary condition for magnetic reconnection is automatically satisfied due to the geometry of current sheets dictated by their source, which is the local plasma turbulence. The current sheets are shown to be elongated along the background magnetic field andmore »Free, publicly-accessible full text available December 1, 2022
-
Abstract Radio emission from interplanetary shocks, planetary foreshocks, and some solar flares occurs in the so-called “plasma emission” framework. The generally accepted scenario begins with electrostatic Langmuir waves that are driven by a suprathermal electron beam on the Landau resonance. These Langmuir waves then mode-convert to freely propagating electromagnetic emissions at the local plasma frequency f pe and/or its harmonic 2 f pe . However, the details of the physics of mode conversion are unclear, and so far the magnetic component of the plasma waves has not been definitively measured. Several spacecraft have measured quasi-monochromatic Langmuir or slow extraordinary modesmore »Free, publicly-accessible full text available March 1, 2023
-
Abstract A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field—switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of these structures. The role of FR merging in controlling the structure of SBs in the solar wind ismore »Free, publicly-accessible full text available February 1, 2023
-
Abstract The origin of switchbacks in the solar wind is discussed in two classes of theory that differ in the location of the source being either near the transition region near the Sun or in the solar wind itself. The two classes of theory differ in their predictions of the switchback rate (the number of switchbacks observed per hour) as a function of distance from the Sun. To distinguish between these theories, one-hour averages of Parker Solar Probe data were averaged over five orbits to find the following: (1) The hourly averaged switchback rate was independent of distance from themore »Free, publicly-accessible full text available September 1, 2022
-
Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identifymore »Free, publicly-accessible full text available November 30, 2022
-
Abstract In van der Holst et al. (2019), we modeled the solar corona and inner heliosphere of the first encounter of NASA’s Parker Solar Probe (PSP) using the Alfvén Wave Solar atmosphere Model (AWSoM) with Air Force Data Assimilative Photospheric flux Transport–Global Oscillation Network Group magnetograms, and made predictions of the state of the solar wind plasma for the first encounter. AWSoM uses low-frequency Alfvén wave turbulence to address the coronal heating and acceleration. Here, we revise our simulations, by introducing improvements in the energy partitioning of the wave dissipation to the electron and anisotropic proton heating and using amore »Free, publicly-accessible full text available February 1, 2023