Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 25, 2026
-
null (Ed.)This paper presents an optimized design of research-oriented ASVs and a systematic design evaluation methodology for reliable in-water sensing. The objective is to minimize the interference on sensor readings by any ASV maneuver. The design space includes motors and sensors locations. In addition, this paper analyzes modularity - i.e., the effects of new sensor's installation. All prototype designs are thoroughly tested using hydrostatic analyses, Computational Fluid Dynamics (CFD) simulations, and real-world field testings. Quantitative metrics, including trim, pitch, velocity magnitude of flow, and turbulence, are used to compare different configurations. Our experiments show that a motor configuration at the back part of the straights hulls is the most optimal design, resulting in high-quality data collection.more » « less
-
This paper presents a design for interlocking blocks and an algorithm that allows these blocks to be assembled into desired shapes. During and after assembly, the structure is kinematically interlocked if a small number of blocks are immobilized relative to other blocks. There are two types of blocks: cubes and double-height posts, each with a particular set of male and female joints. Layouts for shapes involving thousands of blocks have been planned automatically, and shapes with several hundred blocks have been built by hand. As a proof of concept, a robot was used to assemble sixteen blocks. The paper also describes a method for assembling blocks in parallel.more » « less
An official website of the United States government

Full Text Available