skip to main content

Search for: All records

Creators/Authors contains: "Balzano, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2023
  2. Free, publicly-accessible full text available June 1, 2023
  3. While Markov jump systems (MJSs) are more appropriate than LTI systems in terms of modeling abruptly changing dynamics, MJSs (and other switched systems) may suffer from the model complexity brought by the potentially sheer number of switching modes. Much of the existing work on reducing switched systems focuses on the state space where techniques such as discretization and dimension reduction are performed, yet reducing mode complexity receives few attention. In this work, inspired by clustering techniques from unsupervised learning, we propose a reduction method for MJS such that a mode-reduced MJS can be constructed with guaranteed approximation performance. Furthermore, we show how this reduced MJS can be used in designing controllers for the original MJS to reduce the computation cost while maintaining guaranteed suboptimality. Keywords: Markov Jump Systems, System Reduction, Clustering
  4. We propose a new fast streaming algorithm for the tensor completion problem of imputing missing entries of a lowtubal-rank tensor using the tensor singular value decomposition (t-SVD) algebraic framework. We show the t-SVD is a specialization of the well-studied block-term decomposition for third-order tensors, and we present an algorithm under this model that can track changing free submodules from incomplete streaming 2-D data. The proposed algorithm uses principles from incremental gradient descent on the Grassmann manifold of subspaces to solve the tensor completion problem with linear complexity and constant memory in the number of time samples. We provide a local expected linear convergence result for our algorithm. Our empirical results are competitive in accuracy but much faster in compute time than state-of-the-art tensor completion algorithms on real applications to recover temporal chemo-sensing and MRI data under limited sampling.
  5. Real-world control applications often involve complex dynamics subject to abrupt changes or variations. Markov jump linear systems (MJS) provide a rich framework for modeling such dynamics. Despite an extensive history, theoretical understanding of parameter sensitivities of MJS control is somewhat lacking. Motivated by this, we investigate robustness aspects of certainty equivalent model-based optimal control for MJS with a quadratic cost function. Given the uncertainty in the system matrices and in the Markov transition matrix is bounded by ϵ and η respectively, robustness results are established for (i) the solution to coupled Riccati equations and (ii) the optimal cost, by providing explicit perturbation bounds that decay as O(ε+η) and O((ε+η)2) respectively.
  6. Learning how to effectively control unknown dynamical systems from data is crucial for intelligent autonomous systems. This task becomes a significant challenge when the underlying dynamics are changing with time. Motivated by this challenge, this paper considers the problem of controlling an unknown Markov jump linear system (MJS) to optimize a quadratic objective in a data-driven way. By taking a model-based perspective, we consider identification-based adaptive control for MJS. We first provide a system identification algorithm for MJS to learn the dynamics in each mode as well as the Markov transition matrix, underlying the evolution of the mode switches, from a single trajectory of the system states, inputs, and modes. Through mixing-time arguments, sample complexity of this algorithm is shown to be O(1/T−−√). We then propose an adaptive control scheme that performs system identification together with certainty equivalent control to adapt the controllers in an episodic fashion. Combining our sample complexity results with recent perturbation results for certainty equivalent control, we prove that when the episode lengths are appropriately chosen, the proposed adaptive control scheme achieves O(T−−√) regret. Our proof strategy introduces innovations to handle Markovian jumps and a weaker notion of stability common in MJSs. Our analysis provides insightsmore »into system theoretic quantities that affect learning accuracy and control performance. Numerical simulations are presented to further reinforce these insights.« less
  7. Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems,giving an approximate representation of complex data sets in terms of a reduced number ofextracted features. Convergence guarantees for most of the OMF algorithms in the litera-ture assume independence between data matrices, and the case of dependent data streamsremains largely unexplored. In this paper, we show that a non-convex generalization ofthe well-known OMF algorithm for i.i.d. stream of data in (Mairal et al., 2010) convergesalmost surely to the set of critical points of the expected loss function, even when the datamatrices are functions of some underlying Markov chain satisfying a mild mixing condition.This allows one to extract features more efficiently from dependent data streams, as thereis no need to subsample the data sequence to approximately satisfy the independence as-sumption. As the main application, by combining online non-negative matrix factorizationand a recent MCMC algorithm for sampling motifs from networks, we propose a novelframework ofNetwork Dictionary Learning, which extracts “network dictionary patches”from a given network in an online manner that encodes main features of the network. Wedemonstrate this technique and its application to network denoising problems on real-worldnetwork data
  8. Abstract Subspace clustering is the unsupervised grouping of points lying near a union of low-dimensional linear subspaces. Algorithms based directly on geometric properties of such data tend to either provide poor empirical performance, lack theoretical guarantees or depend heavily on their initialization. We present a novel geometric approach to the subspace clustering problem that leverages ensembles of the $K$-subspace (KSS) algorithm via the evidence accumulation clustering framework. Our algorithm, referred to as ensemble $K$-subspaces (EKSSs), forms a co-association matrix whose $(i,j)$th entry is the number of times points $i$ and $j$ are clustered together by several runs of KSS with random initializations. We prove general recovery guarantees for any algorithm that forms an affinity matrix with entries close to a monotonic transformation of pairwise absolute inner products. We then show that a specific instance of EKSS results in an affinity matrix with entries of this form, and hence our proposed algorithm can provably recover subspaces under similar conditions to state-of-the-art algorithms. The finding is, to the best of our knowledge, the first recovery guarantee for evidence accumulation clustering and for KSS variants. We show on synthetic data that our method performs well in the traditionally challenging settings of subspaces withmore »large intersection, subspaces with small principal angles and noisy data. Finally, we evaluate our algorithm on six common benchmark datasets and show that unlike existing methods, EKSS achieves excellent empirical performance when there are both a small and large number of points per subspace.« less
  9. null (Ed.)