skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bambic, Christopher J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use local stratified shearing-box simulations with magnetic field-aligned thermal conduction to study an idealized model of the coupling between a cold, radiatively efficient accretion disc, and an overlying, hot, two-temperature corona. Evaporation of a cold disc by conduction from the hot corona has been proposed as a means of mediating the soft-to-hard state transitions observed in X-ray binary systems. We model the coronal plasma in our local disc patch as an MHD fluid subject to both free-streaming ion conduction and a parametrized cooling function that captures the collisional transfer of energy from hot ions to colder, rapidly cooling leptons. In all of our models, independent of the initial net vertical magnetic flux (NF) threading the disc, we find no evidence of disc evaporation. The ion heat flux into the disc is radiated away before conduction can heat the disc’s surface layers. When an initial NF is present, steady-state temperature, density, and outflow velocities in our model coronae are unaffected by conduction. Instead of facilitating disc evaporation, thermal conduction is more likely to feed the disc with plasma condensing out of the corona, particularly in flows without NF. Our work indicates that uncertainties in the amount of NF threading the disc hold far greater influence over whether or not the disc will evaporate into a radiatively inefficient accretion flow compared to thermal conduction. We speculate that a change in net flux mediates disc truncation/evaporation.

     
    more » « less
  2. ABSTRACT

    We use local stratified shearing-box simulations to elucidate the impact of two-temperature thermodynamics on the thermal structure of coronae in radiatively efficient accretion flows. Rather than treating the coronal plasma as an isothermal fluid, we use a simple, parametrized cooling function that models the collisional transfer of energy from the ions to the rapidly cooling leptons. Two-temperature models naturally form temperature inversions, with a hot, magnetically dominated corona surrounding a cold disc. Simulations with net vertical flux (NF) magnetic fields launch powerful magnetocentrifugal winds that would enhance accretion in a global system. The outflow rates are much better converged with increasing box height than analogous isothermal simulations, suggesting that the winds into two-temperature coronae may be sufficiently strong to evaporate a thin disc and form a radiatively inefficient accretion flow under some conditions. We find evidence for multiphase structure in the corona, with broad density and temperature distributions, and we propose criteria for the formation of a multiphase corona. The fraction of cooling in the surface layers of the disc is substantially larger for NF fields compared to zero net-flux configurations, with moderate NF simulations radiating ≳30 per cent of the flow’s total luminosity above two mid-plane scale heights. Our work shows that NF fields may efficiently power the coronae of luminous Seyfert galaxies and quasars, providing compelling motivation for future studies of the heating mechanisms available to NF fields and the interplay of radiation with two-temperature thermodynamics.

     
    more » « less