skip to main content

Search for: All records

Creators/Authors contains: "Bandara, Y. M. Nuwan D. Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans/Ccis< 1) or negative chemical gradients (Ctrans/Ccis> 1). Thecisside concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while thetransside concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+and Clions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.

    more » « less
  2. Abstract

    Recently, we developed a fabrication method—chemically‐tuned controlled dielectric breakdown (CT‐CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid‐state nanopores (SSNs). However, the noise characteristics of CT‐CDB nanopores are largely unexplored. In this work, we investigated the 1/fnoise of CT‐CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαsof CT‐CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/fnoise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/fnoise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/fnoise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT‐CDB nanopores.

    more » « less
  3. Abstract

    Polysaccharides have key biological functions and can be harnessed for therapeutic roles, such as the anticoagulant heparin. Their complexity—e.g., >100 monosaccharides with variety in linkage and branching structure—significantly complicates analysis compared to other biopolymers such as DNA and proteins. More, and improved, analysis tools have been called for, and here we demonstrate that solid-state silicon nitride nanopore sensors and tuned sensing conditions can be used to reliably detect native polysaccharides and enzymatic digestion products, differentiate between different polysaccharides in straightforward assays, provide new experimental insights into nanopore electrokinetics, and uncover polysaccharide properties. We show that nanopore sensing allows us to easily differentiate between a clinical heparin sample and one spiked with the contaminant that caused deaths in 2008 when its presence went undetected by conventional assays. The work reported here lays a foundation to further explore polysaccharide characterization and develop assays using thin-film solid-state nanopore sensors.

    more » « less
  4. Abstract

    Vesicles perform many essential functions in all living organisms. They respond like a transducer to mechanical stress in converting the applied force into mechanical and biological responses. At the same time, both biochemical and biophysical signals influence the vesicular response in bearing mechanical loads. In recent years, liposomes, artificial lipid vesicles, have gained substantial attention from the pharmaceutical industry as a prospective drug carrier which can also serve as an artificial cell‐mimetic system. The ability of these vesicles to enter through pores of even smaller size makes them ideal candidates for therapeutic agents to reach the infected sites effectively. Engineering of vesicles with desired mechanical properties that can encapsulate drugs and release as required is the prime challenge in this field. This requirement has led to the modifications of the composition of the bilayer membrane by adding cholesterol, sphingomyelin, etc. In this article, we review the manufacturing and characterization techniques of various artificial/synthetic vesicles. We particularly focus on the electric field‐driven characterization techniques to determine different properties of vesicle and its membranes, such as bending rigidity, viscosity, capacitance, conductance, etc., which are indicators of their content and mobility. Similarities and differences between artificial vesicles, natural vesicles, and cells are highlighted throughout the manuscript since most of these artificial vesicles are intended for cell mimetic functions.

    more » « less
  5. Abstract

    In this work, we present a step‐by‐step workflow for the fabrication of 2D hexagonal boron nitride (h‐BN) nanopores which are then used to sense holo‐human serum transferrin (hSTf) protein at pH ∼8 under applied voltages ranging from +100 mV to +800 mV. 2D nanopores are often used for DNA, however, there is a great void in the literature for single‐molecule protein sensing and this, to the best of our knowledge, is the first time where h‐BN—a material with large band‐gap, low dielectric constant, reduced parasitic capacitance and minimal charge transfer induced noise—is used for protein profiling. The corresponding ΔG(change in pore conductance due to analyte translocation) profiles showed a bimodal Gaussian distribution where the lower and higher ΔGdistributions were attributed to (pseudo‐) folded and unfolded conformations respectively. With increasing voltage, the voltage induced unfolding increased (evident by decrease in ΔG) and plateaued after ∼400 mV of applied voltage. From the ΔGversus voltage profile corresponding to the pseudo‐folded state, we calculated the molecular radius of hSTf, and was found to be ∼3.1 nm which is in close concordance with the literature reported value of ∼3.25 nm.

    more » « less