skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bandini, Paola"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The end goal of this research is assessing the feasibility of using enzyme induced carbonate precipitation (EICP) to create a cemented top layer to control runoff erosion in sloping sandy soil. The paper presents the results of an experimental study of bench-scale tests on EICP-treated sands to determine a treatment method feasible for field placement for this application. The soils tested were two natural sands and Ottawa 20-30 sand used as control. The EICP application methods were percolation by gravity, one-step mix-compact, and two-step mix-compact. Other conditions considered were pre-rinsing the sand prior to treatment, adjusting soil pH prior to treatment, and changing the EICP solution concentration. Promising results for this field application were obtained using the two-step mix-compact when the soil was first mixed with the urease enzyme solution before compaction. Considering that the EICP reaction starts once all components are added, this method would ensure that the reaction does not take place before the protective layer of treated soil has been installed. The effect of pre-rinsing the natural sand was not consistent throughout the testing conditions and its role in improving soil cementation in natural sand needs further study. 
    more » « less
  2. null (Ed.)