- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Banerjee, N. K. (2)
-
Banerjee, S. (2)
-
Banerjee, N. (1)
-
Boolani, A. (1)
-
Helmick, J. (1)
-
Hoffstaetter, G. H. (1)
-
Inzerillo, S. (1)
-
Jiang, J. (1)
-
Koscica, R. (1)
-
Kranz, S. (1)
-
Lou, W. (1)
-
Premawardhana, G. (1)
-
Ryan, J. (1)
-
Schenck, E. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Jiang, J.; Schenck, E.; Kranz, S.; Banerjee, S.; Banerjee, N. K. (, International Conference on Multimedia Modeling)In this paper, we present an approach that detects the level of food in store-bought containers using deep convolutional neural networks (CNNs) trained on RGB images captured using an off-the-shelf camera. Our approach addresses three challenges—the diversity in container geometry, the large variations in shapes and appearances of labels on store-bought containers, and the variability in color of container contents—by augmenting the data used to train the CNNs using printed labels with synthetic textures attached to the training bottles, interchanging the contents of the bottles of the training containers, and randomly altering the intensities of blocks of pixels in the labels and at the bottle borders. Our approach provides an average level detection accuracy of 92.4% using leave-one-out cross-validation on 10 store-bought bottles of varying geometries, label appearances, label shapes, and content colors.more » « less
-
Ryan, J.; Inzerillo, S.; Helmick, J.; Boolani, A.; Banerjee, N. K.; Banerjee, S. (, International Conference on eHealth, Telemedicine, and Social Medicine)
An official website of the United States government

Full Text Available