skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bang, Lucas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Software testing techniques like symbolic execution face significant challenges with path explosion. Asymptotic Path Complexity (APC) quantifies this path explosion complexity, but existing APC methods do not work for interprocedural functions in general. Our new algorithm, APC-IP, efficiently computes APC for a wider range of functions, including interprocedural ones, improving over previous methods in both speed and scope. We implement APC-IP atop the existing software Metrinome, and test it against a benchmark of C functions, comparing it to existing and baseline approaches as well as comparing it to the path explosion of the symbolic execution engine Klee. The results show that APC-IP not only aligns with previous APC values but also excels in performance, scalability, and handling complex source code. It also provides a complexity prediction of the number of paths explored by Klee, extending the APC metric's applicability and surpassing previous implementations. 
    more » « less
  2. Information leaks are a significant problem in modern software systems. In recent years, information theoretic concepts, such as Shannon entropy, have been applied to quantifying information leaks in programs. One recent approach is to use symbolic execution together with model counting constraints solvers in order to quantify information leakage. There are at least two reasons for unsoundness in quantifying information leakage using this approach: 1) Symbolic execution may not be able to explore all execution paths, 2) Model counting constraints solvers may not be able to provide an exact count. We present a sound symbolic quantitative information flow analysis that bounds the information leakage both for the cases where the program behavior is not fully explored and the model counting constraint solver is unable to provide a precise model count but provides an upper and a lower bound. We implemented our approach as an extension to KLEE for computing sound bounds for information leakage in C programs. 
    more » « less