As an emerging nonvolatile memory technology, HfO2‐based ferroelectrics exhibit excellent compatibility with silicon CMOS process flows; however, the reliability of polarization switching in these materials remains a major challenge. During repeated field programming and erase of the polarization state of initially pristine HfO2‐based ferroelectric capacitors, the magnitude of the measured polarization increases, a phenomenon known as “wake‐up”. In this study, the authors attempt to understand what causes the wake‐up effect in Hf0.5Zr0.5O2(HZO) capacitors using nondestructive methods that probe statistically significant sample volumes. Synchrotron X‐ray diffraction reveals a concerted shift in HZO Bragg peak position as a function of polarization switching cycle number in films prepared under conditions such that they exhibit extremely large (≈3000%) wake‐up. In contrast, a control sample with insignificant wake‐up shows no such peak shift. Capacitance – voltage measurements show evolution in the capacitance loop with switching cycle number for the wake‐up sample and no change for the control sample. Piezoresponse force microscopy measurements are utilized to visualize the domain switching with wake‐up. The combination of these observations clearly demonstrates that wake‐up is caused by a field‐driven phase transformation of the tetragonal phase to the metastable ferroelectric orthorhombic phase during polarization switching of HZO capacitors.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Ferroelectric switching is demonstrated in CeO2‐doped Hf0.5Zr0.5O2(HZCO) thin films with application in back‐end‐of‐line compatible embedded memories. At low cerium oxide doping concentrations (2.0–5.6 mol%), the ferroelectric orthorhombic phase is stabilized after annealing at temperatures below 400 °C. HZCO ferroelectrics show reliable switching characteristics beyond 1011cycles in TiN/HZCO/TiN capacitors, several orders of magnitude greater than identically processed Hf0.5Zr0.5O2(HZO) capacitors, without sacrificing polarization and retention. Internal photoemission and photoconductivity experiments show that CeO2‐doping introduces in‐gap states in HZCO that are nearly aligned with TiN Fermi level, facilitating electron injection through these states. The enhanced average bulk conduction, which may lead to more uniform thermal dissipation in the HZCO films, delays irreversible degradation via breakdown that leads to device failure after repeated programming cycles.
-
Abstract Achieving high oxygen evolution reaction (OER) activity while maintaining performance stability is a key challenge for designing perovskite structure oxide OER catalysts, which are often unstable in alkaline environments transforming into an amorphous phase. While the chemical and structural transformation occurring during electrolysis at the electrolyte–catalyst interface is now regarded as a crucial factor influencing OER activity, here, using La0.7Sr0.3CoO3−
δ (LSCO) as an active OER catalyst, the critical influence of buried layers on the oxidation current stability in nanoscopically thin, chemically and structurally evolving, catalyst layers is revealed. The use of epitaxial thin films is demonstrated to engineer both depletion layer widths and chemical stability of the catalyst support structure resulting in heterostructured anodes that maintain facile transport kinetics across the electrolyte–anode interface for atomically thin (2–3 unit cells) LSCO catalyst layers and greatly enhanced oxidation current stability as the perovskite structure OER catalysts chemically and structurally transform. This work opens up an approach to design robust and active heterostructured anodes with dynamically evolving ultrathin OER electrocatalyst layers for future green fuel technologies such as conformal coatings of high‐density 3D anode topologies for water splitting.