Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper systematically investigates the generation of code explanations by Large Language Models (LLMs) for code examples commonly encountered in introductory programming courses. Our findings reveal significant variations in the nature of code explanations produced by LLMs, influenced by factors such as the wording of the prompt, the specific code examples under consideration, the programming language involved, the temperature parameter, and the version of the LLM. However, a consistent pattern emerges for Java and Python, where ex- planations exhibit a Flesch-Kincaid readability level of approximately 7-8 grade and a consistent lexical density, indicating the proportion of meaningful words relative to the total explanation size. Additionally, the generated explanations consistently achieve high scores for correctness, but lower scores on three other metrics: completeness, conciseness, and specificity.more » « lessFree, publicly-accessible full text available December 15, 2024
-
Frasson, C. ; Mylonas, P. ; Troussas, C. (Ed.)Domain modeling is an important task in designing, developing, and deploying intelligent tutoring systems and other adaptive instructional systems. We focus here on the more specific task of automatically extracting a domain model from textbooks. In particular, this paper explores using multiple textbook indexes to extract a domain model for computer programming. Our approach is based on the observation that different experts, i.e., authors of intro-to-programming textbooks in our case, break down a domain in slightly different ways, and identifying the commonalities and differences can be very revealing. To this end, we present automated approaches to extracting domain models from multiple textbooks and compare the resulting common domain model with a domain model created by experts. Specifically, we use approximate string-matching approaches to increase coverage of the resulting domain model and majority voting across different textbooks to discover common domain terms related to computer programming. Our results indicate that using approximate string matching gives more accurate domain models for computer programming with increased precision and recall. By automating our approach, we can significantly reduce the time and effort required to construct high-quality domain models, making it easy to develop and deploy tutoring systems. Furthermore, we obtain a common domain model that can serve as a benchmark or skeleton that can be used broadly and adapted to specific needs by others.more » « less
-
null (Ed.)We present a novel approach to intro-to-programming domain model discovery from textbooks using an over-generation and ranking strategy. We first extract candidate key phrases from each chapter in a Computer Science textbook focusing on intro-to-programming and then rank those concepts according to a number of metrics such as the standard tf-idf weight used in information retrieval and metrics produced by other text ranking algorithms. Specifically, we conduct our work in the context of developing an intelligent tutoring system for source code comprehension for which a specification of the key programming concepts is needed - the system monitors students' performance on those concepts and scaffolds their learning process until they show mastery of the concepts. Our experiments with programming concept instruction from Java textbooks indicate that the statistical methods such as KP Miner method are quite competitive compared to other more sophisticated methods. Automated discovery of domain models will lead to more scalable Intelligent Tutoring Systems (ITSs) across topics and domains, which is a major challenge that needs to be addressed if ITSs are to be widely used by millions of learners across many domains.more » « less