- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Armstrong, Jeff (1)
-
Banks, Peter_A (1)
-
Chung, Jong_Won (1)
-
D'Avino, Gabriele (1)
-
Okamoto, Toshihiro (1)
-
Park, Jeong‐Il (1)
-
Ruggiero, Michael_T (1)
-
Ruzié, Christian (1)
-
Sawabe, Chizuru (1)
-
Schweicher, Guillaume (1)
-
Sirringhaus, Henning (1)
-
Takeya, Jun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Organic semiconductors with distinct molecular properties and large carrier mobilities are constantly developed in attempt to produce highly‐efficient electronic materials. Recently, designer molecules with unique structural modifications have been expressly developed to suppress molecular motions in the solid state that arise from low‐energy phonon modes, which uniquely limit carrier mobilities through electron–phonon coupling. However, such low‐frequency vibrational dynamics often involve complex molecular dynamics, making comprehension of the underlying electronic origins of electron–phonon coupling difficult. In this study, first a mode‐resolved picture of electron–phonon coupling in a series of materials that are specifically designed to suppress detrimental vibrational effects, is generated. From this foundation, a method is developed based on the crystalline orbital Hamiltonian population (COHP) analyses to resolve the origins—down to the single atomic‐orbital scale—of surprisingly large electron–phonon coupling constants of particular vibrations, explicitly detailing the manner in which the intermolecular wavefunction overlap is perturbed. Overall, this approach provides a comprehensive explanation into the unexpected effects of less‐commonly studied molecular vibrations, revealing new aspects of molecular design that should be considered for creating improved organic semiconducting materials.more » « less
An official website of the United States government
