Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2024
-
A bstract A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb
− 1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level. -
Abstract The mass of the top quark is measured in 36.3
of LHC proton–proton collision data collected with the CMS detector at$$\,\text {fb}^{-1}$$ . The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ . This approach significantly improves the precision over previous measurements.$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$ -
A bstract A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb
− 1at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z′ boson couplings to a bb quark pair (g b), an sb quark pair (g bδ bs), and any same-flavor charged lepton (g ℓ ) or neutrino pair (g ν ), with|g ν | =|g ℓ | . For a Z′ boson with a mass = 350 GeV (2 TeV) and$$ {m}_{{\textrm{Z}}^{\prime }} $$ |δ bs| < 0.25, the majority of the parameter space with 0.0057 <|g ℓ | < 0.35 (0.25 <|g ℓ | < 0.43) and 0.0079 < |g b | < 0.46 (0.34 < |g b | < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z′ model with parameters consistent with low-energy b → sℓℓ measurements. In this scenario, most of the allowed parameter space is excluded for a Z′ boson with 350 < < 500 GeV, while the constraints are less stringent for higher$$ {m}_{{\textrm{Z}}^{\prime }} $$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.$$ {m}_{{\textrm{Z}}^{\prime }} $$ -
Abstract A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at
by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$ . The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {fb}^{-1}$$ Higgs boson to invisible particles,$$\,\text {Ge}\hspace{-.08em}\text {V}$$ , is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ searches carried out at$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ , 8, and 13$${\sqrt{s}=7}$$ in complementary production modes. The combined upper limit at 95% confidence level on$$\,\text {Te}\hspace{-.08em}\text {V}$$ is 0.15 (0.08 expected).$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ -
A bstract The second-order (
v 2) and third-order (v 3) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/ ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb− 1recorded with the CMS detector. The J/ ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. Thev 2andv 3coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measuredv 2values for prompt J/ ψ mesons are found to be larger than those for nonprompt J/ ψ mesons. The prompt J/ ψv 2values at highp Tare found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/ ψ mesonv 3and prompt ψ(2S)v 2andv 3values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions. -
A bstract A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb
− 1of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ( ) pair, or a light-flavor quark-antiquark ($$ \textrm{t}\overline{\textrm{t}} $$ ) pair and a virtual or on-shell W boson. The main backgrounds,$$ \textrm{q}\overline{\textrm{q}} $$ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a$$ \textrm{t}\overline{\textrm{t}} $$ pair (a$$ \textrm{t}\overline{\textrm{t}} $$ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV.$$ \textrm{q}\overline{\textrm{q}} $$