skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banstola, Bijay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. RationaleA two‐component matrix of 2‐nitrophloroglucinol (2‐NPG) and silica nanoparticles was used for matrix‐assisted laser desorption ionization (MALDI) mass spectrometry imaging of high‐charge‐state biomolecules in tissue. Potential advantages include increased effective mass range and efficiency of fragmentation. MethodsA mixture of 2‐NPG matrix and silica nanoparticles was applied to cyrosectioned 10 μm thick mouse brain tissue. The mixture was pipetted onto the tissue for profiling and sprayed for tissue imaging. MALDI images were obtained under high vacuum in a commercial time‐of‐flight mass spectrometer. ResultsThe combined 2‐NPG and nanoparticle matrix produced highly charged ions from tissue with high‐vacuum MALDI. Nanoparticles of 20, 70, 400, and 1000 nm in diameter were tested, the 20 nm particles producing the highest charge states. Images of mouse brain tissue obtained from highly charged ions show similar spatial localization. ConclusionsThe combined 2‐NPG and nanoparticle matrix produces highly charged ions from tissue through a mechanism that may rely on the high surface area of the particles which can dry the tissue, and their ability to bind analyte molecules thereby assisting in crystal formation and production of multiply charged ions on laser irradiation. 
    more » « less