Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available August 27, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
The occurrence of local buckling, an external anomaly in pipelines, significantly contributes to pipeline incidents, posing challenges in monitoring such localized anomalies, particularly during pipeline operations. This paper introduces an approach aimed at monitoring local buckling occurring in the compression bending area of pipeline sections. The proposed approach utilizes fiber Bragg gratings (FBGs) to facilitate real-time measurement of strain changes. Experimental tests were conducted on the steel pipe equipped with FBGs positioned near the top and bottom of the pipe, subjected to four-point loading test to generate bending and local buckling. The strain data obtained from FBGs enable effective detection and localization of bending and buckling deformations during the loading process. This research contributes to enhancing the capability to monitor external threats to pipelines, thereby fostering improved condition assessments and bolstering infrastructure resilience.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Structural integrity can be compromised by the simultaneous presence of mechanical loads and corrosive agents. This study investigates the complex interplay between corrosion and impact loads in steel plates, utilizing discrete Fiber Bragg Grating (FBG) and distributed Optical Frequency Domain Reflectometry (OFDR) sensing technology. Generalized fiber optic-based sensing models are developed to quantify corrosion severity and rate. The experimental study was conducted using twelve epoxy-coated steel plates equipped with FBG and OFDR sensors, covering scenarios of individual exposure to corrosion, impact loads, as well as their combination. Test results reveal that specimens subjected to combined conditioning exhibit more corrosion damage than those subjected to individual corrosion. Both pit depth and its growth rate were exacerbated due to the impact loads. The study demonstrates the potential of fiber optic sensors (FOSs) for real-time monitoring and assessment of structural health under different simultaneous multiple factors in challenging conditions.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available June 1, 2025
-
Free, publicly-accessible full text available June 1, 2025