skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bar-on, Maxwell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern heavy vehicles rely on insecure protocols (CAN and SAE-J1939) to facilitate communication between the embedded devices that control their various subsys- tems. Due to the growing integration of wireless-enabled embedded devices, vehicles are becoming increasingly vulnerable to remote cyberattacks against their embedded networks. We propose an efficient deep-learning-based approach for mitigating such attacks through real-time J1939 signal reconstruction. Our approach uses random feature masking during training to build a generalized model of a vehicle’s network. To reduce the computa- tional and storage burden of the model, we employ 8-bit Quantization-Aware Training (QAT), enabling its deploy- ment on resource-constrained embedded devices while maintaining high performance. We evaluate Transformer and LSTM-based architectures, demonstrating that both effectively reconstruct signals with minimal computa- tional and storage overhead. Our approach achieves sig- nal reconstruction with error levels below 1% of their operating range while maintaining a very low storage footprint of under 1 MB, demonstrating that lightweight deep-learning models can enhance resiliency against real- time attacks in heavy vehicles. 
    more » « less
    Free, publicly-accessible full text available September 15, 2026