skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bara, Jason_E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conversion of epichlorohydrin to glycidyl ethers creates versatile precursors that can be transformed into a variety of molecular species with glycerol skeletons, enabling the design of molecules with highly tailored functionalities. The synthesis of 2,2,2‐trifluoroethyl glycidyl ether (TFGE, IUPAC name: 2‐[(2,2,2‐trifluoroethoxy)methyl]oxirane, CAS# 1535‐91‐7) was optimized to provide high yield/selectivity and good “green metrics.” TFGE was then used as a platform molecule in the synthesis of asymmetric glycerol 1,3‐diether‐2‐alcohol derivatives, which were subsequently transformed to 1,2,3‐triethers or 1,3‐diether‐2‐ketones. The density, viscosity, and CO2solubility of each molecule were measured and compared with those of other glycerol‐derived compounds as well as compounds with similar functional groups. Furthermore, quantum chemical calculations were performed to understand the structure–property–performance relationships of these molecules for CO2absorption. Based on the results in this work, we foresee that TFGE (and similar glycidyl ethers) would offer great flexibility in molecular design of green solvents and precursors to more complex compounds. 
    more » « less
  2. Abstract Advancements in the performance and properties of ionenes can be achieved via rational molecular design strategies which combine structural elements of ionic liquids (ILs) and high‐performance polymers. The use of imidazole‐amine molecules with asymmetric reactivity has enabled the synthesis of new bis(imidazole) diimide monomers which are then polymerized via the Menshutkin reaction, followed by anion exchange to various molecular species well known in the IL literature. In this work, three types of imidazolium polyimide‐ionene backbones were synthesized starting from 1‐(3‐aminopropyl)imidazole and pyromellitic dianhydride (PMDA) or 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) or from 1‐(4‐aminophenyl)imidazole and 6FDA, with these monomers then reacted withpara‐dichloroxylene. The Clanions on the resultant ionenes were then exchanged with one of six molecular anions yielding a total of 18 distinct polymer compositions. The functional groups present within the cationic backbone as well as the anion type were observed to strongly influence both the thermal and organizational properties of these new ionenes. © 2019 Society of Chemical Industry 
    more » « less
  3. ABSTRACT A new series of six imidazolium‐based ionenes containing aromatic amide linkages has been developed. These ionene‐polyamides are all constitutional isomers varying in the regiochemistry of the amide linkages (para, meta) and xylyl linkages (ortho, meta, para) along the polymer backbone. The physical properties as well as the gas separation behaviors of the corresponding membranes have been extensively studied. These ionene‐polyamide membranes show excellent thermal and mechanical stabilities, together with self‐healing and shape memory characteristics. Most importantly, [TC‐API(p)‐Xy][Tf2N] and [IC‐API(m)‐Xy][Tf2N] membranes (TC, terephthaloyl chloride; API, 1‐(3‐aminopropyl)imidazole; Xy, xylyl; Tf2N, bis(trifluoromethylsulfonyl) imide; IC, isophthaloyl chloride), where the amide and xylyl linkages are attached at para and meta positions, exhibit superior selectivity for CO2/CH4and CO2/N2gas pairs. We also demonstrate the transport properties and diverse applicability of our newly developed ionene‐polyamides, particularly [TC‐API(p)‐Xy][Tf2N], for various industrial applications. © 2019 Society of Chemical Industry 
    more » « less