skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baraban, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work considers autonomous fruit picking using an aerial grasping robot by tightly integrating vision-based perception and control within a learning framework. The architecture employs a convolutional neural network (CNN) to encode images and vehicle state information. This encoding is passed into a sub-task classifier and associated reference waypoint generator. The classifier is trained to predict the current phase of the task being executed: Staging, Picking, or Reset. Based on the predicted phase, the waypoint generator predicts a set of obstacle-free 6-DOF waypoints, which serve as a reference trajectory for model-predictive control (MPC). By iteratively generating and following these trajectories, the aerial manipulator safely approaches a mock-up goal fruit and removes it from the tree. The proposed approach is validated in 29 flight tests, through a comparison to a conventional baseline approach, and an ablation study on its key features. Overall, the approach achieved comparable success rates to the conventional approach, while reaching the goal faster. 
    more » « less