skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baranov, Mikhail_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the structure‐function relationships of the green fluorescent protein (GFP) chromophore is important in rationally developing new molecular tools for biological imaging and beyond. Herein, we systematically modified the GFP chromophore structure with electron‐withdrawing and ‐donating groups (EWGs and EDGs) to investigate the substituent effects on the excited‐state proton transfer (ESPT) and twisting dynamics of the cationic chromophore in solution. With key insights gained from femtosecond transient absorption and stimulated Raman spectroscopy, we reveal that the EWG substitution by –F increases photoacidity in an additive manner and leads to an ultrafast barrierless ESPT by difluorination, while the EDG substitution by –OCH3also results in ultrafast ESPT despite the weak photoacidity as estimated by the Förster equation. We ascribe the unusually fast kinetics in methoxylated derivatives to the occurrence of a pre‐existing chromophore‐solvent complex that sets up the acceptor site for ESPT. Furthermore, the kinetic competition between ESPT and twisting pathways is crucial for the observation of ESPT in action, particularly for molecules undergoing efficient nonradiative decay in the excited state through torsional motions. Such flexible and highly engineerable molecules can enable more versatile photoswitches and sensors. 
    more » « less
  2. Abstract Fluorescence‐activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence‐activating and absorption‐shifting tag (FAST) is a light‐weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super‐resolution imaging. However, the rational design of FAST‐specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double‐donor‐one‐acceptor strategy, which exhibits an over 550‐fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M−1 cm−1, is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein−fluorogen interactions. Our deep insights into structure‐function relationships could guide the rational design of bright fluorogens for live‐cell imaging with extended spectral properties such as redder emissions. 
    more » « less