skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barbosa, Pedro_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Seasonally flooded forests along tropical rivers cover extensive areas, yet the processes driving air‐water exchanges of radiatively active gases are uncertain. To quantify the controls on gas transfer velocities, we combined measurements of water‐column temperature, meteorology in the forest and adjacent open water, turbulence with an acoustic Doppler velocimeter, gas concentrations, and fluxes with floating chambers. Under cooling, measured turbulence, quantified as the rate of dissipation of turbulent kinetic energy (ε), was similar to buoyancy flux computed from the surface energy budget, indicating convection dominated turbulence production. Under heating, turbulence was suppressed unless winds in the adjacent open water exceeded 1 m/s. Gas transfer velocities obtained from chamber measurements ranged from 1 to 5 cm/hr and were similar to or slightly less than predicted using a turbulence‐based surface renewal model computed with measuredεandεpredicted from wind and cooling. 
    more » « less