skip to main content

Search for: All records

Creators/Authors contains: "Barnard, Holly R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives.

    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Biogeochemical properties of soils play a crucial role in soil and stream chemistry throughout a watershed. How water interacts with soils during subsurface flow can have impacts on water quality, thus, it is fundamental to understand where and how certain soil water chemical processes occur within a catchment. In this study, ~200 soil samples were evaluated throughout a small catchment in the Front Range of Colorado, USA to examine spatial and vertical patterns in major soil solutes among different landscape units: riparian areas, alluvial/colluvial fans, and steep hillslopes. Solutes were extracted from the soil samples in the laboratory and analyzed for major cation (Li, K, Mg, Br, and Ca) and anion (F, Cl, NO 2 , NO 3 , PO 4 , and SO 4 ) concentrations using ion chromatography. Concentrations of most solutes were greater in near surface soils (10 cm) than in deeper soils (100 cm) across all landscape units, except for F which increased with depth, suggestive of surface accumulation processes such as dust deposition or enrichment due to biotic cycling. Potassium had the highest variation between depths, ranging from 1.04 mg/l (100 cm) to 3.13 mg/l (10 cm) sampled from riparian landscape units. Nearly every solute was found to be enriched in riparian areas where vegetation was visibly denser, with higher mean concentrations than the hillslopes and fans, except for NO 3 which had higher concentrations in the fans. Br, NO 2 , and PO 4 concentrations were often below the detectable limit, and Li and Na were not variable between depths or landscape units. Ratioed stream water concentrations (K:Na, Ca:Mg, and NO 3 :Cl) vs. discharge relationships compared to the soil solute ratios indicated a hydraulic disconnection between the shallow soils (<100 cm) and the stream. Based on the comparisons among depths and landscape units, our findings suggest that K, Ca, F, and NO 3 solutes may serve as valuable tracers to identify subsurface flowpaths as they are distinct among landscape units and depth within this catchment. However, interflow and/or shallow groundwater flow likely have little direct connection to streamflow generation. 
    more » « less
  3. Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine on daily and seasonal scales using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI). These data were used to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. Measurements of xylem fluid electrical conductivity were constant in the early growing season while inverted sapwood electrical conductivity steadily increased, suggesting that increases in sapwood electrical conductivity did not result from an increase in xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. On the daily scale, changes in inverted sapwood electrical conductivity correspond to changes in sapwood moisture. Wavelet analyses indicated that lag times between inverted electrical conductivity and sapflow increased after storm events, suggesting that as soils wetted, reliance on internal water storage decreased, as did the time required to refill daily deficits in internal water storage. We found short time lags between sapflow and inverted electrical conductivity with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Time-lapse ERI- and wavelet-analysis results highlight the important role internal tree water storage plays in supporting transpiration throughout a day and during periods of declining subsurface moisture. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Understanding the severity and extent of near surface critical zone (CZ) disturbances and their ecosystem response is a pressing concern in the face of increasing human and natural disturbances. Predicting disturbance severity and recovery in a changing climate requires comprehensive understanding of ecosystem feedbacks among vegetation and the surrounding environment, including climate, hydrology, geomorphology, and biogeochemistry. Field surveys and satellite remote sensing have limited ability to effectively capture the spatial and temporal variability of disturbance and CZ properties. Technological advances in remote sensing using new sensors and new platforms have improved observations of changes in vegetation canopy structure and productivity; however, integrating measures of forest disturbance from various sensing platforms is complex. By connecting the potential for remote sensing technologies to observe different CZ disturbance vectors, we show that lower severity disturbance and slower vegetation recovery are more difficult to quantify. Case studies in montane forests from the western United States highlight new opportunities, including evaluating post‐disturbance forest recovery at multiple scales, shedding light on understory vegetation regrowth, detecting specific physiological responses, and refining ecohydrological modeling. Learning from regional CZ disturbance case studies, we propose future directions to synthesize fragmented findings with (a) new data analysis using new or existing sensors, (b) data fusion across multiple sensors and platforms, (c) increasing the value of ground‐based observations, (d) disturbance modeling, and (e) synthesis to improve understanding of disturbance.

    more » « less
  7. Abstract

    Mechanisms of runoff generation in the humid tropics are poorly understood, particularly in the context of land‐use/land cover change. This study analyzed the results of 124 storm hydrographs from three humid tropical catchments of markedly different vegetation cover and land‐use history in central Panama during the 2017 wet season: actively grazed pasture, young secondary succession, and near‐mature forest. We used electrical conductivity to separate baseflow (old water) from storm‐event water (new‐water). In all three land covers, new‐water dominated storm runoff generation in 44% of the sampled storm events, indicating the dominance of fast shallow flow paths in the landscape. Activation of these flow paths was found to depend on a combination of maximum rainfall intensity and total storm rainfall, which, in turn, relates to markedly contrasting hydrograph separation results among land covers. Relationships between these rainfall characteristics and storm runoff generation were nonlinear, producing a threshold response with the exceedance of specific rainfall volumes and/or intensities. The pastoral catchment delivered order of magnitude more new‐water during storm events than the two forested catchments. Although new‐water contributed minimally (<10%) to total wet season runoff in the forested catchments, 43% of runoff generation in the pasture came from five large rainfall events where a threshold response produced substantial increases in total runoff and new‐runoff efficiency. Based on our results, we propose a conceptual model of hydrologic flow paths in humid tropical systems that can explain previously observed disparities in seasonal storage and runoff with respect to land use/land cover.

    more » « less
  8. Abstract

    Growing season length (GSL) is a key unifying concept in ecology that can be estimated from eddy covariance-derived estimates of net ecosystem production (NEP). Previous studies disagree on how increasing GSLs may affect NEP in evergreen coniferous forests, potentially due to the variety of methods used to quantify GSL from NEP. We calculated GSL and GSL-NEP regressions at eleven evergreen conifer sites across a broad climatic gradient in western North America using three common approaches: (1) variable length (3–7 days) regressions of day of year versus NEP, (2) a smoothed threshold approach, and (3) the carbon uptake period, followed by a new approach of a method-averaged ensemble. The GSL and the GSL-NEP relationship differed among methods, resulting in linear relationships with variable sign, slope, and statistical significance. For all combinations of sites and methods, the GSL explained between 6% and 82% of NEP withp-values ranging from 0.45 to < 0.01. These results demonstrate the variability among GSL methods and the importance of selecting an appropriate method to accurately project the ecosystem carbon cycling response to longer growing seasons in the future. To encourage this approach in future studies, we outline a series of best practices for GSL method selection depending on research goals and the annual NEP dynamics of the study site(s). These results contribute to understanding growing season dynamics at ecosystem and continental scales and underscore the potential for methodological variability to influence forecasts of the evergreen conifer forest response to climate variability.

    more » « less
  9. Abstract

    The subsurface processes that mediate the connection between evapotranspiration and groundwater within forested hillslopes are poorly defined. Here, we investigate the origin of diel signals in unsaturated soil water, groundwater, and stream stage on three forested hillslopes in the H.J. Andrews Experimental Forest in western Oregon, USA, during the summer of 2017, and assess how the diurnal signal in evapotranspiration (ET) is transferred through the hillslope and into these stores. There was no evidence of diel fluctuations in upslope groundwater wells, suggesting that tree water uptake in upslope areas does not directly contribute to the diel signal observed in near‐stream groundwater and streamflow. The water table in upslope areas resided within largely consolidated bedrock, which was overlain by highly fractured unsaturated bedrock. These subsurface characteristics inhibited formation of diel signals in groundwater and impeded the transfer of diel signals in soil moisture to groundwater because (1) the bedrock where the water table resides limited root penetration and (2) the low unsaturated hydraulic conductivity of the highly fractured rock weakened the hydraulic connection between groundwater and soil/rock moisture. Transpiration‐driven diel fluctuations in groundwater were limited to near‐stream areas but were not ubiquitous in space and time. The depth to the groundwater table and the geologic structure at that depth likely dictated rooting depth and thus controlled where and when the transpiration‐driven diel fluctuations were apparent in riparian groundwater. This study outlines the role of hillslope hydrogeology and its influence on the translation of evapotranspiration and soil moisture fluctuations to groundwater and stream fluctuations.

    more » « less