skip to main content


Search for: All records

Creators/Authors contains: "Barnes, Jowan M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Among the most important challenges faced by ice flow models is how to represent basal and rheological conditions, which are challenging to obtain from direct observations. A common practice is to use numerical inversions to calculate estimates for the unknown properties, but there are many possible methods and not one standardised approach. As such, every ice flow model has a unique initialisation procedure. Here we compare the outputs of inversions from three different ice flow models, each employing a variant of adjoint-based optimisation to calculate basal sliding coefficients and flow rate factors using the same observed surface velocities and ice thickness distribution. The region we focus on is the Amundsen Sea Embayment in West Antarctica, the subject of much investigation due to rapid changes in the area over recent decades. We find that our inversions produce similar distributions of basal sliding across all models, despite using different techniques, implying that the methods used are highly robust and represent the physical equations without much influence by individual model behaviours. Transferring the products of inversions between models results in time-dependent simulations displaying variability on the order of or lower than existing model intercomparisons. Focusing on contributions to sea level, the highest variability we find in simulations run in the same model with different inversion products is 32 %, over a 40-year period, a difference of 3.67 mm. There is potential for this to be improved with further standardisation of modelling processes, and the lowest variability within a single model is 13 %, or 1.82 mm over 40 years. While the successful transfer of inversion outputs from one model to another requires some extra effort and technical knowledge of the particular models involved, it is certainly possible and could indeed be useful for future intercomparison projects. 
    more » « less
  2. Abstract

    Using three independent ice‐flow models and several satellite‐based datasets, we assess the importance of correctly capturing ice‐shelf breakup, shelf thinning, and reduction in basal traction from ungrounding in reproducing observed speed‐up and thinning of Thwaites Glacier between 1995 and 2015. We run several transient numerical simulations applying these three perturbations individually. Our results show that ocean‐induced ice‐shelf thinning generates most of the observed grounding line retreat, inland speed‐up, and mass loss, in agreement with previous work. We improve the agreement with observed inland speed‐up and thinning by prescribing changes in ice‐shelf geometry and a reduction in basal traction over areas that became ungrounded since 1995, suggesting that shelf breakups and thinning‐induced reduction in basal traction play a critical role on Thwaites's dynamics, as pointed out by previous studies. These findings suggest that modeling Thwaites's future requires reliable ocean‐induced melt estimates in models that respond accurately to downstream perturbations.

     
    more » « less