Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mortality of tree species around the globe is increasingly driven by hotter drought and heat waves. Tree juveniles are at risk, as well as adults, and this will have a negative effect on forest dynamics and structure under climate change. Novel management options are urgently needed to reduce this mortality and positively affect forest dynamics and structure. Potential drought-ameliorating soil amendments such as nanochitosan – a biopolymer upcycled from byproducts of the seafood industry – may provide an additional set of useful tools for reducing juvenile mortality during hotter droughts. Nanochitosan promotes water and nutrient absorption in plants but has not been tested in the context of drought and heat stress. We evaluated factors affecting mortality risk and rate for drylandPinus edulisjuveniles (2–3 years old) in a growth chamber using a factorial experiment that included ambient and +4°C warmer base temperatures, with and without a 10 day +8°C heat wave, and with and without a nanochitosan soil amendment. The nanochitosan treatment reduced the relative risk of mortality, emphasizing a protective function of this soil amendment, reducing the relative risk of mortality by 37%. Importantly, the protective effects of nanochitosan soil amendment in delaying tree mortality under hotter drought and heat waves provides a new, potentially positive management treatment for tree juveniles trying to survive in the climate of the Anthropocene.more » « lessFree, publicly-accessible full text available July 24, 2025
-
Abstract Restoring and preserving the world's forests are promising natural pathways to mitigate some aspects of climate change. In addition to regulating atmospheric carbon dioxide concentrations, forests modify surface and near‐surface air temperatures through biophysical processes. In the eastern United States (EUS), widespread reforestation during the 20th century coincided with an anomalous lack of warming, raising questions about reforestation's contribution to local cooling and climate mitigation. Using new cross‐scale approaches and multiple independent sources of data, we uncovered links between reforestation and the response of both surface and air temperature in the EUS. Ground‐ and satellite‐based observations showed that EUS forests cool the land surface by 1–2°C annually compared to nearby grasslands and croplands, with the strongest cooling effect during midday in the growing season, when cooling is 2–5°C. Young forests (20–40 years) have the strongest cooling effect on surface temperature. Surface cooling extends to the near‐surface air, with forests reducing midday air temperature by up to 1°C compared to nearby non‐forests. Analyses of historical land cover and air temperature trends showed that the cooling benefits of reforestation extend across the landscape. Locations surrounded by reforestation were up to 1°C cooler than neighboring locations that did not undergo land cover change, and areas dominated by regrowing forests were associated with cooling temperature trends in much of the EUS. Our work indicates reforestation contributed to the historically slow pace of warming in the EUS, underscoring reforestation's potential as a local climate adaptation strategy in temperate regions.more » « less
-
Abstract Widespread shifts in land cover and land management (LCLM) are being incentivized as tools to mitigate climate change, creating an urgent need for prognostic assessments of how LCLM impacts surface energy balance and temperature. Historically, observational studies have tended to focus on how LCLM impacts surface temperature (Tsurf), usually at annual timescales. However, understanding the potential for LCLM change to confer climate adaptation benefits, or to produce unintended adverse consequences, requires careful consideration of impacts on bothTsurfand the near-surface air temperature (Ta,local) when they are most consequential for ecosystem and societal well-being (e.g. on hot summer days). Here, long-term data from 130 AmeriFlux towers distributed between 19–71 °N are used to systematically explore LCLM impacts on bothTsurfandTa,local, with an explicit focus on midday summer periods when adaptive cooling is arguably most needed. We observe profound impacts of LCLM onTsurfat midday, frequently amounting to differences of 10 K or more from one site to the next. LCLM impacts onTa,localare smaller but still significant, driving variation of 5–10 K across sites. The magnitude of LCLM impacts on bothTsurfandTa,localis not well explained by plant functional type, climate regime, or albedo; however, we show that LCLM shifts that enhance ET or increase canopy height are likely to confer a local mid-day cooling benefit for bothTsurfandTa,localmost of the time. At night, LCLM impacts on temperature are much smaller, such that averaging across the diurnal cycle will underestimate the potential for land cover to mediate microclimate when the consequences for plant and human well-being are most stark. Finally, during especially hot periods, land cover impacts onTa,localandTsurfare less coordinated, and ecosystems that tend to cool the air during normal conditions may have a diminished capacity to do so when it is very hot. We end with a set of practical recommendations for future work evaluating the biophysical impacts and adaptation potential of LCLM shifts.more » « less
-
Summary Some plants exhibit dynamic hydraulic regulation, in which the strictness of hydraulic regulation (i.e. iso/anisohydry) changes in response to environmental conditions. However, the environmental controls over iso/anisohydry and the implications of flexible hydraulic regulation for plant productivity remain unknown.InJuniperus osteosperma, a drought‐resistant dryland conifer, we collected a 5‐month growing season time series ofin situ, high temporal‐resolution plant water potential () and stand gross primary productivity (GPP). We quantified the stringency of hydraulic regulation associated with environmental covariates and evaluated how predawn water potential contributes to empirically predicting carbon uptake.Juniperus osteospermashowed less stringent hydraulic regulation (more anisohydric) after monsoon precipitation pulses, when soil moisture and atmospheric demand were high, and corresponded with GPP pulses. Predawn water potential matched the timing of GPP fluxes and improved estimates of GPP more strongly than soil and/or atmospheric moisture, notably resolving GPP underestimation before vegetation green‐up.Flexible hydraulic regulation appears to allowJ. osteospermato prolong soil water extraction and, therefore, the period of high carbon uptake following monsoon precipitation pulses. Water potential and its dynamic regulation may account for why process‐based and empirical models commonly underestimate the magnitude and temporal variability of dryland GPP.more » « less
-
Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, e.g., by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policy making or implementation. As a result, there is a critical mismatch between the point- and tree- scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policy making. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.more » « less
-
Abstract The oak (Quercus) species of eastern North America are declining in abundance, threatening the many socioecological benefits they provide. We discuss the mechanisms responsible for their loss, many of which are rooted in the prevailing view that oaks are drought tolerant. We then synthesize previously published data to comprehensively review the drought response strategies of eastern US oaks, concluding that whether or not eastern oaks are drought tolerant depends firmly on the metric of success. Although the anisohydric strategy of oaks sometimes confers a gas exchange and growth advantage, it exposes oaks to damaging hydraulic failure, such that oaks are just as or more likely to perish during drought than neighboring species. Consequently, drought frequency is not a strong predictor of historic patterns of oak abundance, although long-term climate and fire frequency are strongly correlated with declines in oak dominance. The oaks’ ability to survive drought may become increasingly difficult in a drier future.more » « less