Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Graphene oxide (GO) membranes, known for their high dielectric constant and low dielectric loss, have emerged as promising separators for advanced energy storage and transfer devices. While previous research has focused on the aqueous stability enhancement by high-valence metal cations, their effect on modifying the dielectric properties of GO membranes remains understudied. This study investigates the impact of transition metal cation modification on the aqueous stability and dielectric properties of graphene oxide (GO) membranes. Multivalent transition metal chlorides (FeCl3, FeCl2, CuCl2, and CuCl) were introduced during the self-assembly process to create modified GO membranes. The membranes were characterized using various techniques, including zeta potential measurements, contact angle measurements, FTIR spectroscopy, and XRD spectroscopy. The aqueous stability of the modified membranes was evaluated, and their dielectric performance was assessed using capacitance measurements across a frequency range of 0.1 Hz to 105 Hz. The results demonstrate that the choice of transition metal cation and its oxidation state significantly influence the morphology, aqueous stability, and dielectric properties of the GO membranes. Notably, Fe3+ and Cu2+ modifications enhanced aqueous stability, while Fe2+ and Cu+ modifications improved dielectric performance. This study provides insights into tailoring the properties of GO membranes for various applications, including energy storage and transfer devices.more » « lessFree, publicly-accessible full text available July 5, 2026
-
Abstract STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published inThe Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results.more » « less
An official website of the United States government
