skip to main content

Search for: All records

Creators/Authors contains: "Barriopedro, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Documentary climate data describe evidence of past climate arising from predominantly written historical documents such as diaries, chronicles, newspapers, or logbooks. Over the past decades, historians and climatologists have generated numerous document-based time series of local and regional climates. However, a global dataset of documentary climate time series has never been compiled, and documentary data are rarely used in large-scale climate reconstructions. Here, we present the first global multi-variable collection of documentary climate records. The dataset DOCU-CLIM comprises 621 time series (both published and hitherto unpublished) providing information on historical variations in temperature, precipitation, and wind regime. The series are evaluated by formulating proxy forward models (i.e., predicting the documentary observations from climate fields) in an overlapping period. Results show strong correlations, particularly for the temperature-sensitive series. Correlations are somewhat lower for precipitation-sensitive series. Overall, we ascribe considerable potential to documentary records as climate data, especially in regions and seasons not well represented by early instrumental data and palaeoclimate proxies.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Storylines of atmospheric circulation change, or physically self-consistent narratives of plausible future events, have recently been proposed as a non-probabilistic means to represent uncertainties in climate change projections. Here, we apply the storyline approach to 21st century projections of summer air stagnation over Europe and the United States. We use a Climate Model Intercomparison Project Phase 6 (CMIP6) ensemble to generate stagnation storylines based on the forced response of three remote drivers of the Northern Hemisphere mid-latitude atmospheric circulation: North Atlantic warming, North Pacific warming, and tropical versus Arctic warming. Under a high radiative forcing scenario (SSP5-8.5), models consistently project increases in stagnation over Europe and the U.S., but the magnitude and spatial distribution of changes vary substantially across CMIP6 ensemble members, suggesting that future projections are not well-constrained when using the ensemble mean alone. We find that the diversity of projected stagnation changes depends on the forced response of remote drivers in individual models. This is especially true in Europe, where differences of ∼2 summer stagnant days per degree of global warming are found amongst the different storyline combinations. For example, the greatest projected increase in stagnation for most European regions leads to the smallest increase in stagnation for southwestern Europe; i.e. limited North Atlantic warming combined with near-equitable tropical and Arctic warming. In the U.S., only the atmosphere over the northern Rocky Mountain states demonstrates comparable stagnation projection uncertainty, due to opposite influences of remote drivers on the meteorological conditions that lead to stagnation.

    more » « less