skip to main content

Search for: All records

Creators/Authors contains: "Bartlett, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries Bn on 12C and 27Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additional kinematic point to a series of previous measurements of Bn on 12C and provide a first measurement on 27Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average laboratory scattering angle for both targets was 7.7∘, and the average Q2 for both targets was 0.024 37 GeV2 (Q=0.1561 GeV). The asymmetries are Bn=−10.68±0.90(stat)±0.57(syst) ppm for 12C and Bn=−12.16±0.58(stat)±0.62(syst) ppmmore »for 27Al. The results are consistent with theoretical predictions, and are compared to existing data. When scaled by Z/A, the Q dependence of all the far-forward angle (θ<10∘) data from 1H to 27Al can be described by the same slope out to Q≈0.35 GeV. Larger-angle data from other experiments in the same Q range are consistent with a slope about twice as steep.« less
  4. Free, publicly-accessible full text available October 1, 2022
  5. A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θlab=7.9° and a mean energy of 1.149 GeV. The asymmetry result is Bn=−5.194±0.067(stat)±0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θlab→0) where they should be most reliable.