skip to main content


Search for: All records

Creators/Authors contains: "Bashiri, Mohammad Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the imitation learning problem of learning a policy in a Markov Decision Process (MDP) setting where the reward function is not given, but demonstrations from experts are available. Although the goal of imitation learning is to learn a policy that produces behaviors nearly as good as the experts’ for a desired task, assumptions of consistent optimality for demonstrated behaviors are often violated in practice. Finding a policy that is distributionally robust against noisy demonstrations based on an adversarial construction potentially solves this problem by avoiding optimistic generalizations of the demonstrated data. This paper studies Distributionally Robust Imitation Learning (DRoIL) and establishes a close connection between DRoIL and Maximum Entropy Inverse Reinforcement Learning. We show that DRoIL can be seen as a framework that maximizes a generalized concept of entropy. We develop a novel approach to transform the objective function into a convex optimization problem over a polynomial number of variables for a class of loss functions that are additive over state and action spaces. Our approach lets us optimize both stationary and non-stationary policies and, unlike prevalent previous methods, it does not require repeatedly solving an inner reinforcement learning problem. We experimentally show the significant benefits of DRoIL’s new optimization method on synthetic data and a highway driving environment. 
    more » « less
  2. In many structured prediction problems, complex relationships between variables are compactly defined using graphical structures. The most prevalent graphical prediction methods---probabilistic graphical models and large margin methods---have their own distinct strengths but also possess significant drawbacks. Conditional random fields (CRFs) are Fisher consistent, but they do not permit integration of customized loss metrics into their learning process. Large-margin models, such as structured support vector machines (SSVMs), have the flexibility to incorporate customized loss metrics, but lack Fisher consistency guarantees. We present adversarial graphical models (AGM), a distributionally robust approach for constructing a predictor that performs robustly for a class of data distributions defined using a graphical structure. Our approach enjoys both the flexibility of incorporating customized loss metrics into its design as well as the statistical guarantee of Fisher consistency. We present exact learning and prediction algorithms for AGM with time complexity similar to existing graphical models and show the practical benefits of our approach with experiments. 
    more » « less