skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bashyal, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at differentL/Evalues. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer,Eavail, and transverse momentum transfer,pT, or three momentum transfer,q3are presented.

    Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Neutron production in antineutrino interactions can lead to bias in energy reconstruction in neutrino oscillation experiments, but these interactions have rarely been studied. MINERvA previously studied neutron production at an average antineutrino energy of ∼3 GeV in 2016 and found deficiencies in leading models. In this paper, the MINERvA 6 GeV average antineutrino energy dataset is shown to have similar disagreements. A measurement of the cross section for an antineutrino to produce two or more neutrons and have low visible energy is presented as an experiment-independent way to explore neutron production modeling. This cross section disagrees with several leading models’ predictions. Neutron modeling techniques from nuclear physics are used to quantify neutron detection uncertainties on this result. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. We present measurements of the cross section for antineutrino charged-current quasielasticlike scattering on hydrocarbon using the medium energy NuMI wide-band neutrino beam peaking at antineutrino energy hE¯νi ∼ 6 GeV. The measurements are presented as a function of the longitudinal momentum (pjj) and transverse momentum (pT) of the final state muon. This work complements our previously reported high statistics measurement in the neutrino channel and extends the previous antineutrino measurement made in a low energy beam at hE¯νi ∼ 3.5 GeV out to pT of 2.5 GeV=c. Current theoretical models do not completely describe the data in this previously unexplored high pT region. The single differential cross section as a function of four-momentum transfer (Q2 QE) now extends to 4 GeV2 with high statistics. The cross section as a function of Q2 QE shows that the tuned simulations developed by the MINERvA Collaboration that agreed well with the low energy beam measurements do not agree as well with the medium energy beam measurements. Newer neutrino interaction models such as the GENIE v3 tunes are better able to simulate the high Q2 QE region. 
    more » « less
  4. Abstract Scattering of high energy particles from nucleons probes their structure, as was done in the experiments that established the non-zero size of the proton using electron beams 1 . The use of charged leptons as scattering probes enables measuring the distribution of electric charges, which is encoded in the vector form factors of the nucleon 2 . Scattering weakly interacting neutrinos gives the opportunity to measure both vector and axial vector form factors of the nucleon, providing an additional, complementary probe of their structure. The nucleon transition axial form factor, F A , can be measured from neutrino scattering from free nucleons, ν μ n  →  μ − p and $${\bar{\nu }}_{\mu }p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n , as a function of the negative four-momentum transfer squared ( Q 2 ). Up to now, F A ( Q 2 ) has been extracted from the bound nucleons in neutrino–deuterium scattering 3–9 , which requires uncertain nuclear corrections 10 . Here we report the first high-statistics measurement, to our knowledge, of the $${\bar{\nu }}_{\mu }\,p\to {\mu }^{+}n$$ ν ¯ μ p → μ + n cross-section from the hydrogen atom, using the plastic scintillator target of the MINERvA 11 experiment, extracting F A from free proton targets and measuring the nucleon axial charge radius, r A , to be 0.73 ± 0.17 fm. The antineutrino–hydrogen scattering presented here can access the axial form factor without the need for nuclear theory corrections, and enables direct comparisons with the increasingly precise lattice quantum chromodynamics computations 12–15 . Finally, the tools developed for this analysis and the result presented are substantial advancements in our capabilities to understand the nucleon structure in the weak sector, and also help the current and future neutrino oscillation experiments 16–20 to better constrain neutrino interaction models. 
    more » « less
  5. null (Ed.)