- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bassett, Justice (1)
-
Patel, Dev (1)
-
Rouser, Dr Kurt (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents experimental results for the performance effects of different converging- diverging graphite nozzle throat diameters on an in-house developed kerosenenitrous oxide liquid rocket test stand. The project aims to enhance the performance and efficiency of small-scale liquid rocket engines by experimentally investigating the effects of nozzle throat diameter on thrust and specific impulse. By confirming the correlation between nozzle geometry and the experimental data, it provides valuable insight for improving propulsion systems and components used in experimental rocketry such as sounding rockets. This study will evaluate two different nozzle throat diameters under varying propellant pressures and mass flow rates. The liquid rocket test stand consists of an external aluminum casing with a combustion chamber measuring 20” in length with an outer diameter of 76 mm and an internal diameter of 1.66”. The nozzle throat diameter tested will be 58/64” and 60/64”, each with a fixed exit diameter of 1.82”. Experimental results were collected over a range of total mass flow rates using data acquisition systems and analyzed using graphs and trend lines. The results indicate that as the throat diameter increases, the thrust output and specific impulse increase, although the results are inconclusive due to leaks and a back flame during testing, possibly skewing the results. The ablative wear was analyzed based on the nozzle throat size and mass flow rate. The knowledge gained from this study can be used to prevent future accidents for small-scale liquid rocket engine test stands and verify if the trends seen will be applicable to different nozzle materials and find the optimum nozzle throat diameter.more » « less
An official website of the United States government
