skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Search for: All records

Creators/Authors contains: "Bastow, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rift initiation within cold, thick, strong lithosphere and the evolving linkage to form a contiguous plate boundary remains debated in part owing to the lack of time–space constraints on kinematics of basement‐involved faults. Different rift sectors initiate diachronously and may eventually link to produce a jigsaw spatial pattern, as in the East African rift, and along the Atlantic Ocean margins. The space–time distribution of earthquakes illuminates the geometry and kinematics of fault zones within the crystalline crust, as well as areas with pressurized magma bodies. We use seismicity and Global Navigation System Satellites (GNSS) data from the Turkana Rift Array Investigating Lithospheric Structure (TRAILS) project in East Africa and a new digital compilation of faults and eruptive centres to evaluate models for the kinematic linkage of two initially separate rift sectors: the Main Ethiopian Rift (MER) and the Eastern rift (ER). The ca. 300 km wide zone of linkage includes failed basins and linkage zones; seismicity outlines active structures. Models of GNSS data indicate that the ca. 250 km‐wide zone of seismically active en echelon basins north of the Turkana Depression is a zone, or block, of distributed strain with small counterclockwise rotation that serves to connect the Main Ethiopian and Eastern rifts. Its western boundary is poorly defined owing to data gaps in South Sudan. Strain across the northern and southern boundaries of this block, and an ca. 50 km‐wide kink in the southern Turkana rift is accommodated by en echelon normal faults linked by short strike‐slip faults in crystalline basement, and relay ramps at the surface. Short segments of obliquely oriented basement structures facilitate across‐rift linkage of faults, but basement shear zones and Mesozoic rift faults are not actively straining. This configuration has existed for at least 2–5 My without the development of localized shear zones or transform faults, documenting the importance of distributed deformation in continental rift tectonics. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Abstract The East African Rift System (EARS) provides an opportunity to constrain the relationship between magmatism and plate thinning. During continental rifting, magmatism is often considered a derivative of strain accommodation—as the continental plate thins, decompression melting of the upper mantle occurs. The Turkana Depression preserves among the most extensive Cenozoic magmatic record in the rift. This magmatic record, which comprises distinct basaltic pulses followed by periods of relative magmatic quiescence, is perplexing given the lack of evidence for temporal heterogeneity in the thermo‐chemical state of the upper mantle, the nonexistence of lithospheric delamination related fast‐wave speed anomalies in the upper mantle, and the absence of evidence for sudden, accelerated divergence of Nubia and Somalia. We focus on the Pliocene Gombe Stratoid Series and show how lithospheric thinning may result in pulsed magma generation from a plume‐influenced mantle. By solving the 1D advection‐diffusion equation using rates of plate thinning broadly equivalent to those measured geodetically today we show that despite elevated mantle potential temperature, melt generation may not occur and thereby result in extended intervals of quiescence. By contrast, an increase in the rate of plate thinning can generate magma volumes that are on the order of that estimated for the parental magma of the Gombe Stratoid Series. The coincidence of large‐volume stratiform basalt events within the East African Rift shortly before the development of axial zones of tectonic‐magmatic activity suggests that the plate thinning needed to form these stratiform basalts may herald the onset of the localization of strain. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. The East African rift overlies one or more mantle upwellings and it traverses heterogeneous Archaean-Paleozoic lithosphere rifted in Mesozoic and Cenozoic time. We re-analyze XKS shear wave splitting at publicly available stations to evaluate models for rifting above mantle plumes. We use consistent criteria to compare and contrast both splitting direction and strength, infilling critical gaps with new data from the Turkana Depression and North Tanzania Divergence sectors of the East African rift system. Our results show large spatial variations in the amount of splitting (0.1–2.5 s), with fast axes predominantly sub-parallel to the orientation of Cenozoic rifts underlain by thinned lithosphere with and without surface magmatism. The amount of splitting increases with lithospheric thinning and magmatic modification. Nowhere are fast axes perpendicular to the rift, arguing against the development of extensional strain fabrics. Thick cratons are characterized by small amounts of splitting (≤0.5 s) with a variety of orientations that may characterize mantle plume flow. Splitting rotates to rift parallel and increases in strength over short distances into rift zones, implying a shallow depth range for the anisotropy in some places. The shallow source and correlation between splitting direction and the shape of upper mantle thin zones suggests that the combination of channel flow and oriented melt pockets contribute > 1 s to the observed splitting delays. Enhanced flow, metasomatism, and melt intrusion at the lithosphere-asthenosphere boundary suggest that fluid infiltration to the base of the lithosphere may facilitate rifting of cratonic lithosphere. 
    more » « less
  4. Abstract Constraints on chemical heterogeneities in the upper mantle may be derived from studying the seismically observable impedance contrasts that they produce. Away from subduction zones, several causal mechanisms are possible to explain the intermittently observed X‐discontinuity (X) at 230–350 km depth: the coesite‐stishovite phase transition, the enstatite to clinoenstatite phase transition, and/or carbonated silicate melting, all requiring a local enrichment of basalt. Africa hosts a broad range of terranes, from Precambrian cores to Cenozoic hotspots with or without lowermost mantle origins. With the absence of subduction below the margins of the African plate for >0.5 Ga, Africa presents an ideal study locale to explore the origins of the X. Traditional receiver function (RF) approaches used to map seismic discontinuities, such as common conversion‐point stacking, ignore slowness information crucial for discriminating converted upper mantle phases from surface multiples. By manually assessing depth and slowness stacks for 1° radius overlapping bins, normalized vote mapping of RF stacks is used to robustly assess the spatial distribution of converted upper mantle phases. The X is mapped beneath Africa at 233–340 km depth, revealing patches of heterogeneity proximal to mantle upwellings in Afar, Canaries, Cape Verde, East Africa, Hoggar, and Réunion with further observations beneath Cameroon, Madagascar, and Morocco. There is a lack of an X beneath southern Africa and strikingly, the magmatic eastern rift branch of the southern East African Rift. With no relationships existing between depth and amplitudes of observed X and estimated mantle temperatures, multiple causal mechanisms are required across a range of continental geodynamic settings. 
    more » « less