skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bathie, Gabriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guruswami, Venkatesan (Ed.)
    A fundamental problem in circuit complexity is to find explicit functions that require large depth to compute. When considering the natural DeMorgan basis of {OR,AND}, where negations incur no cost, the best known depth lower bounds for an explicit function in NP have the form (3-o(1))log₂ n, established by Håstad (building on others) in the early 1990s. We make progress on the problem of improving this factor of 3, in two different ways: - We consider an "algorithmic method" approach to proving stronger depth lower bounds for non-uniform circuits in the DeMorgan basis. We show that slightly faster algorithms (than what is known) for counting the number of satisfying assignments on subcubic-size DeMorgan formulas would imply supercubic-size DeMorgan formula lower bounds, implying that the depth must be at least (3+ε)log₂ n for some ε > 0. For example, if #SAT on formulas of size n^{2+2ε} can be solved in 2^{n - n^{1-ε}log^k n} time for some ε > 0 and a sufficiently large constant k, then there is a function computable in 2^{O(n)} time with a SAT oracle which does not have n^{3+ε}-size formulas. In fact, the #SAT algorithm only has to work on formulas that are a conjunction of n^{1-ε} subformulas, each of which is n^{1+3ε} size, in order to obtain the supercubic lower bound. As a proof of concept, we show that our new algorithms-to-lower-bounds connection can be applied to prove new lower bounds for "hybrid" DeMorgan formula models which compute interesting functions at their leaves. - Turning to the {NAND} basis, we establish a greater-than-(3 log₂ n) depth lower bound against uniform circuits solving the SAT problem, using an extension of the "indirect diagonalization" method for NAND formulas. Note that circuits over the NAND basis are a special case of circuits over the DeMorgan basis; however, hard functions such as Andreev’s function (known to require depth (3-o(1))log₂ n in the DeMorgan basis) can still be computed with NAND circuits of depth (3+o(1))log₂ n. Our results imply that SAT requires polylogtime-uniform NAND circuits of depth at least 3.603 log₂ n. 
    more » « less