skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Batson, Philip E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier1. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals2, optical properties of metal nanoparticles3, soundarons in Weyl semimetals4and high-temperature superconductivity in, for example, metal hydrides3,5–7. Here, we present evidence for a demon in Sr2RuO4from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in theβandγbands, the demon is gapless with critical momentumqc = 0.08 reciprocal lattice units and room-temperature velocityv = (1.065 ± 0.12) × 105m s−1that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.

     
    more » « less
  2. Abstract

    Nondestructive neurotransmitter detection and real‐time monitoring of stem cell differentiation are both of great significance in the field of neurodegenerative disease and regenerative medicine. Although luminescent biosensing nanoprobes have been developed to address this need, they have intrinsic limitations such as autofluorescence, scattering, and phototoxicity. Upconversion nanoparticles (UCNPs) have gained increasing attention for various biomedical applications due to their high photostability, low auto‐fluorescent background, and deep tissue penetration; however, UCNPs also suffer from low emission intensities due to undesirable energy migration pathways. To address the aforementioned issue, a single‐crystal core–shell–shell “sandwich” structured UCNP is developed that is designed to minimize deleterious energy back‐transfer to yield bright visible emissions using low power density excitations. These UCNPs show a remarkable enhancement of luminescent output relative to conventional β‐NaYF4:Yb,Er codoped UCNPs and β‐NaYF4:Yb,Er@NaYF4:Yb “active shell” alike. Moreover, this advanced core–shell–shell UCNP is subsequently used to develop a highly sensitive biosensor for the ultrasensitive detection of dopamine released from stem cell‐derived dopaminergic‐neurons. Given the challenges of in situ detection of neurotransmitters, the developed NIR‐based biosensing of neurotransmitters in stem cell‐derived neural interfaces present a unique tool for investigating single‐cell mechanisms associated with dopamine, or other neurotransmitters, and their roles in neurological processes.

     
    more » « less