skip to main content

Search for: All records

Creators/Authors contains: "Batt, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Triboelectric energy harvesters or nanogenerators exploit both contact electri cation and electrostatic induction to scavenge excess energy from random motions of mechanical structures. This study focuses on the modeling of triboelectric energy harvesters in the con guration of contact-separation impact oscillators. While mechanical and electrostatic elements in such systems can be satisfactorily modeled based on existing theories, the underlying physics of contact electri cation is still under debate. The aim of this work is to introduce the surface charge density of dielectric layers as a variable into the macroscopic equations of motion of triboelectric impact oscillators by experimentally investigating the relation between the impact force and the charge transfer during contact electri cation. Specifi cally, specimens with selected pairs of materials are put under a solenoid-driven pressing tester which charges the specimens with a vertical force whose magnitude, frequency and duty cycle can be controlled. An electrometer is used to monitor the short circuit charge flow between the electrodes from which the charge accumulation on dielectric layers can be extracted. With results from parameter-sweep tests, the produced map from contact force to surface charge density can be integrated into equations of motion via curve fitting or interpolation. 
    more » « less
  2. Electret based energy scavenging devices utilize electro-static induction to convert mechanical energy into electrical energy. Uses for these devices include harvesting ambient energy in the environment and acting as sensors for a range of applications. These types of devices have been used in MEMS applications for over a decade. However, recently there is an interest in triboelectric generators/harvesters, i.e., electret based harvesters that utilize triboelectrification as well as electrostatic induction. The literature is filled with a variety of designs for the latter devices, constructed from materials ranging from paper and thin films; rendering the generators lightweight, flexible and inexpensive. However, most of the design of these devices is ad-hoc and not based on exploiting the underlying physics that govern their behavior; the few models that exist neglect the coupled electromechanical behavior of the devices. Motivated by the lack of a comprehensive dynamic model of these devices this manuscript presents a generalized framework based on a Lagrangian formulation to derive electromechanical equation for a lumped parameter dynamic model of an electret-based harvester. The framework is robust, capturing the effects of traditional MEMS devices as well as triboelectric generators. Exploiting numerical simulations the predictions are used to examine the behavior of electret based devices for a variety of loading conditions simulating real-world applications such as power scavengers under simple harmonic forcing and in pedestrian walking. 
    more » « less